5913 lines
		
	
	
		
			184 KiB
		
	
	
	
		
			TypeScript
		
	
	
	
	
	
			
		
		
	
	
			5913 lines
		
	
	
		
			184 KiB
		
	
	
	
		
			TypeScript
		
	
	
	
	
	
| /**
 | |
|  * Immutable data encourages pure functions (data-in, data-out) and lends itself
 | |
|  * to much simpler application development and enabling techniques from
 | |
|  * functional programming such as lazy evaluation.
 | |
|  *
 | |
|  * While designed to bring these powerful functional concepts to JavaScript, it
 | |
|  * presents an Object-Oriented API familiar to Javascript engineers and closely
 | |
|  * mirroring that of Array, Map, and Set. It is easy and efficient to convert to
 | |
|  * and from plain Javascript types.
 | |
|  *
 | |
|  * ## How to read these docs
 | |
|  *
 | |
|  * In order to better explain what kinds of values the Immutable.js API expects
 | |
|  * and produces, this documentation is presented in a statically typed dialect of
 | |
|  * JavaScript (like [Flow][] or [TypeScript][]). You *don't need* to use these
 | |
|  * type checking tools in order to use Immutable.js, however becoming familiar
 | |
|  * with their syntax will help you get a deeper understanding of this API.
 | |
|  *
 | |
|  * **A few examples and how to read them.**
 | |
|  *
 | |
|  * All methods describe the kinds of data they accept and the kinds of data
 | |
|  * they return. For example a function which accepts two numbers and returns
 | |
|  * a number would look like this:
 | |
|  *
 | |
|  * ```js
 | |
|  * sum(first: number, second: number): number
 | |
|  * ```
 | |
|  *
 | |
|  * Sometimes, methods can accept different kinds of data or return different
 | |
|  * kinds of data, and this is described with a *type variable*, which is
 | |
|  * typically in all-caps. For example, a function which always returns the same
 | |
|  * kind of data it was provided would look like this:
 | |
|  *
 | |
|  * ```js
 | |
|  * identity<T>(value: T): T
 | |
|  * ```
 | |
|  *
 | |
|  * Type variables are defined with classes and referred to in methods. For
 | |
|  * example, a class that holds onto a value for you might look like this:
 | |
|  *
 | |
|  * ```js
 | |
|  * class Box<T> {
 | |
|  *   constructor(value: T)
 | |
|  *   getValue(): T
 | |
|  * }
 | |
|  * ```
 | |
|  *
 | |
|  * In order to manipulate Immutable data, methods that we're used to affecting
 | |
|  * a Collection instead return a new Collection of the same type. The type
 | |
|  * `this` refers to the same kind of class. For example, a List which returns
 | |
|  * new Lists when you `push` a value onto it might look like:
 | |
|  *
 | |
|  * ```js
 | |
|  * class List<T> {
 | |
|  *   push(value: T): this
 | |
|  * }
 | |
|  * ```
 | |
|  *
 | |
|  * Many methods in Immutable.js accept values which implement the JavaScript
 | |
|  * [Iterable][] protocol, and might appear like `Iterable<string>` for something
 | |
|  * which represents sequence of strings. Typically in JavaScript we use plain
 | |
|  * Arrays (`[]`) when an Iterable is expected, but also all of the Immutable.js
 | |
|  * collections are iterable themselves!
 | |
|  *
 | |
|  * For example, to get a value deep within a structure of data, we might use
 | |
|  * `getIn` which expects an `Iterable` path:
 | |
|  *
 | |
|  * ```
 | |
|  * getIn(path: Iterable<string | number>): unknown
 | |
|  * ```
 | |
|  *
 | |
|  * To use this method, we could pass an array: `data.getIn([ "key", 2 ])`.
 | |
|  *
 | |
|  *
 | |
|  * Note: All examples are presented in the modern [ES2015][] version of
 | |
|  * JavaScript. Use tools like Babel to support older browsers.
 | |
|  *
 | |
|  * For example:
 | |
|  *
 | |
|  * ```js
 | |
|  * // ES2015
 | |
|  * const mappedFoo = foo.map(x => x * x);
 | |
|  * // ES5
 | |
|  * var mappedFoo = foo.map(function (x) { return x * x; });
 | |
|  * ```
 | |
|  *
 | |
|  * [ES2015]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_6_support_in_Mozilla
 | |
|  * [TypeScript]: https://www.typescriptlang.org/
 | |
|  * [Flow]: https://flowtype.org/
 | |
|  * [Iterable]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
 | |
|  */
 | |
| 
 | |
| declare namespace Immutable {
 | |
|   /** @ignore */
 | |
|   type OnlyObject<T> = Extract<T, object>;
 | |
| 
 | |
|   /** @ignore */
 | |
|   type ContainObject<T> = OnlyObject<T> extends object
 | |
|     ? OnlyObject<T> extends never
 | |
|       ? false
 | |
|       : true
 | |
|     : false;
 | |
| 
 | |
|   /**
 | |
|    * @ignore
 | |
|    *
 | |
|    * Used to convert deeply all immutable types to a plain TS type.
 | |
|    * Using `unknown` on object instead of recursive call as we have a circular reference issue
 | |
|    */
 | |
|   export type DeepCopy<T> = T extends Record<infer R>
 | |
|     ? // convert Record to DeepCopy plain JS object
 | |
|       {
 | |
|         [key in keyof R]: ContainObject<R[key]> extends true ? unknown : R[key];
 | |
|       }
 | |
|     : T extends Collection.Keyed<infer KeyedKey, infer V>
 | |
|     ? // convert KeyedCollection to DeepCopy plain JS object
 | |
|       {
 | |
|         [key in KeyedKey extends string | number | symbol
 | |
|           ? KeyedKey
 | |
|           : string]: V extends object ? unknown : V;
 | |
|       }
 | |
|     : // convert IndexedCollection or Immutable.Set to DeepCopy plain JS array
 | |
|     T extends Collection<infer _, infer V>
 | |
|     ? Array<DeepCopy<V>>
 | |
|     : T extends string | number // Iterable scalar types : should be kept as is
 | |
|     ? T
 | |
|     : T extends Iterable<infer V> // Iterable are converted to plain JS array
 | |
|     ? Array<DeepCopy<V>>
 | |
|     : T extends object // plain JS object are converted deeply
 | |
|     ? {
 | |
|         [ObjectKey in keyof T]: ContainObject<T[ObjectKey]> extends true
 | |
|           ? unknown
 | |
|           : T[ObjectKey];
 | |
|       }
 | |
|     : // other case : should be kept as is
 | |
|       T;
 | |
| 
 | |
|   /**
 | |
|    * Describes which item in a pair should be placed first when sorting
 | |
|    *
 | |
|    * @ignore
 | |
|    */
 | |
|   export enum PairSorting {
 | |
|     LeftThenRight = -1,
 | |
|     RightThenLeft = +1,
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Function comparing two items of the same type. It can return:
 | |
|    *
 | |
|    * * a PairSorting value, to indicate whether the left-hand item or the right-hand item should be placed before the other
 | |
|    *
 | |
|    * * the traditional numeric return value - especially -1, 0, or 1
 | |
|    *
 | |
|    * @ignore
 | |
|    */
 | |
|   export type Comparator<T> = (left: T, right: T) => PairSorting | number;
 | |
| 
 | |
|   /**
 | |
|    * Lists are ordered indexed dense collections, much like a JavaScript
 | |
|    * Array.
 | |
|    *
 | |
|    * Lists are immutable and fully persistent with O(log32 N) gets and sets,
 | |
|    * and O(1) push and pop.
 | |
|    *
 | |
|    * Lists implement Deque, with efficient addition and removal from both the
 | |
|    * end (`push`, `pop`) and beginning (`unshift`, `shift`).
 | |
|    *
 | |
|    * Unlike a JavaScript Array, there is no distinction between an
 | |
|    * "unset" index and an index set to `undefined`. `List#forEach` visits all
 | |
|    * indices from 0 to size, regardless of whether they were explicitly defined.
 | |
|    */
 | |
|   namespace List {
 | |
|     /**
 | |
|      * True if the provided value is a List
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { List } = require('immutable');
 | |
|      * List.isList([]); // false
 | |
|      * List.isList(List()); // true
 | |
|      * ```
 | |
|      */
 | |
|     function isList(maybeList: unknown): maybeList is List<unknown>;
 | |
| 
 | |
|     /**
 | |
|      * Creates a new List containing `values`.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { List } = require('immutable');
 | |
|      * List.of(1, 2, 3, 4)
 | |
|      * // List [ 1, 2, 3, 4 ]
 | |
|      * ```
 | |
|      *
 | |
|      * Note: Values are not altered or converted in any way.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { List } = require('immutable');
 | |
|      * List.of({x:1}, 2, [3], 4)
 | |
|      * // List [ { x: 1 }, 2, [ 3 ], 4 ]
 | |
|      * ```
 | |
|      */
 | |
|     function of<T>(...values: Array<T>): List<T>;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Create a new immutable List containing the values of the provided
 | |
|    * collection-like.
 | |
|    *
 | |
|    * Note: `List` is a factory function and not a class, and does not use the
 | |
|    * `new` keyword during construction.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { List, Set } = require('immutable')
 | |
|    *
 | |
|    * const emptyList = List()
 | |
|    * // List []
 | |
|    *
 | |
|    * const plainArray = [ 1, 2, 3, 4 ]
 | |
|    * const listFromPlainArray = List(plainArray)
 | |
|    * // List [ 1, 2, 3, 4 ]
 | |
|    *
 | |
|    * const plainSet = Set([ 1, 2, 3, 4 ])
 | |
|    * const listFromPlainSet = List(plainSet)
 | |
|    * // List [ 1, 2, 3, 4 ]
 | |
|    *
 | |
|    * const arrayIterator = plainArray[Symbol.iterator]()
 | |
|    * const listFromCollectionArray = List(arrayIterator)
 | |
|    * // List [ 1, 2, 3, 4 ]
 | |
|    *
 | |
|    * listFromPlainArray.equals(listFromCollectionArray) // true
 | |
|    * listFromPlainSet.equals(listFromCollectionArray) // true
 | |
|    * listFromPlainSet.equals(listFromPlainArray) // true
 | |
|    * ```
 | |
|    */
 | |
|   function List<T>(collection?: Iterable<T> | ArrayLike<T>): List<T>;
 | |
| 
 | |
|   interface List<T> extends Collection.Indexed<T> {
 | |
|     /**
 | |
|      * The number of items in this List.
 | |
|      */
 | |
|     readonly size: number;
 | |
| 
 | |
|     // Persistent changes
 | |
| 
 | |
|     /**
 | |
|      * Returns a new List which includes `value` at `index`. If `index` already
 | |
|      * exists in this List, it will be replaced.
 | |
|      *
 | |
|      * `index` may be a negative number, which indexes back from the end of the
 | |
|      * List. `v.set(-1, "value")` sets the last item in the List.
 | |
|      *
 | |
|      * If `index` larger than `size`, the returned List's `size` will be large
 | |
|      * enough to include the `index`.
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { List } = require('immutable');" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * const originalList = List([ 0 ]);
 | |
|      * // List [ 0 ]
 | |
|      * originalList.set(1, 1);
 | |
|      * // List [ 0, 1 ]
 | |
|      * originalList.set(0, 'overwritten');
 | |
|      * // List [ "overwritten" ]
 | |
|      * originalList.set(2, 2);
 | |
|      * // List [ 0, undefined, 2 ]
 | |
|      *
 | |
|      * List().set(50000, 'value').size;
 | |
|      * // 50001
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `set` can be used in `withMutations`.
 | |
|      */
 | |
|     set(index: number, value: T): List<T>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new List which excludes this `index` and with a size 1 less
 | |
|      * than this List. Values at indices above `index` are shifted down by 1 to
 | |
|      * fill the position.
 | |
|      *
 | |
|      * This is synonymous with `list.splice(index, 1)`.
 | |
|      *
 | |
|      * `index` may be a negative number, which indexes back from the end of the
 | |
|      * List. `v.delete(-1)` deletes the last item in the List.
 | |
|      *
 | |
|      * Note: `delete` cannot be safely used in IE8
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { List } = require('immutable');" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * List([ 0, 1, 2, 3, 4 ]).delete(0);
 | |
|      * // List [ 1, 2, 3, 4 ]
 | |
|      * ```
 | |
|      *
 | |
|      * Since `delete()` re-indexes values, it produces a complete copy, which
 | |
|      * has `O(N)` complexity.
 | |
|      *
 | |
|      * Note: `delete` *cannot* be used in `withMutations`.
 | |
|      *
 | |
|      * @alias remove
 | |
|      */
 | |
|     delete(index: number): List<T>;
 | |
|     remove(index: number): List<T>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new List with `value` at `index` with a size 1 more than this
 | |
|      * List. Values at indices above `index` are shifted over by 1.
 | |
|      *
 | |
|      * This is synonymous with `list.splice(index, 0, value)`.
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { List } = require('immutable');" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * List([ 0, 1, 2, 3, 4 ]).insert(6, 5)
 | |
|      * // List [ 0, 1, 2, 3, 4, 5 ]
 | |
|      * ```
 | |
|      *
 | |
|      * Since `insert()` re-indexes values, it produces a complete copy, which
 | |
|      * has `O(N)` complexity.
 | |
|      *
 | |
|      * Note: `insert` *cannot* be used in `withMutations`.
 | |
|      */
 | |
|     insert(index: number, value: T): List<T>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new List with 0 size and no values in constant time.
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { List } = require('immutable');" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * List([ 1, 2, 3, 4 ]).clear()
 | |
|      * // List []
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `clear` can be used in `withMutations`.
 | |
|      */
 | |
|     clear(): List<T>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new List with the provided `values` appended, starting at this
 | |
|      * List's `size`.
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { List } = require('immutable');" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * List([ 1, 2, 3, 4 ]).push(5)
 | |
|      * // List [ 1, 2, 3, 4, 5 ]
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `push` can be used in `withMutations`.
 | |
|      */
 | |
|     push(...values: Array<T>): List<T>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new List with a size ones less than this List, excluding
 | |
|      * the last index in this List.
 | |
|      *
 | |
|      * Note: this differs from `Array#pop` because it returns a new
 | |
|      * List rather than the removed value. Use `last()` to get the last value
 | |
|      * in this List.
 | |
|      *
 | |
|      * ```js
 | |
|      * List([ 1, 2, 3, 4 ]).pop()
 | |
|      * // List[ 1, 2, 3 ]
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `pop` can be used in `withMutations`.
 | |
|      */
 | |
|     pop(): List<T>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new List with the provided `values` prepended, shifting other
 | |
|      * values ahead to higher indices.
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { List } = require('immutable');" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * List([ 2, 3, 4]).unshift(1);
 | |
|      * // List [ 1, 2, 3, 4 ]
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `unshift` can be used in `withMutations`.
 | |
|      */
 | |
|     unshift(...values: Array<T>): List<T>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new List with a size ones less than this List, excluding
 | |
|      * the first index in this List, shifting all other values to a lower index.
 | |
|      *
 | |
|      * Note: this differs from `Array#shift` because it returns a new
 | |
|      * List rather than the removed value. Use `first()` to get the first
 | |
|      * value in this List.
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { List } = require('immutable');" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * List([ 0, 1, 2, 3, 4 ]).shift();
 | |
|      * // List [ 1, 2, 3, 4 ]
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `shift` can be used in `withMutations`.
 | |
|      */
 | |
|     shift(): List<T>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new List with an updated value at `index` with the return
 | |
|      * value of calling `updater` with the existing value, or `notSetValue` if
 | |
|      * `index` was not set. If called with a single argument, `updater` is
 | |
|      * called with the List itself.
 | |
|      *
 | |
|      * `index` may be a negative number, which indexes back from the end of the
 | |
|      * List. `v.update(-1)` updates the last item in the List.
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { List } = require('immutable');" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * const list = List([ 'a', 'b', 'c' ])
 | |
|      * const result = list.update(2, val => val.toUpperCase())
 | |
|      * // List [ "a", "b", "C" ]
 | |
|      * ```
 | |
|      *
 | |
|      * This can be very useful as a way to "chain" a normal function into a
 | |
|      * sequence of methods. RxJS calls this "let" and lodash calls it "thru".
 | |
|      *
 | |
|      * For example, to sum a List after mapping and filtering:
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { List } = require('immutable');" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * function sum(collection) {
 | |
|      *   return collection.reduce((sum, x) => sum + x, 0)
 | |
|      * }
 | |
|      *
 | |
|      * List([ 1, 2, 3 ])
 | |
|      *   .map(x => x + 1)
 | |
|      *   .filter(x => x % 2 === 0)
 | |
|      *   .update(sum)
 | |
|      * // 6
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `update(index)` can be used in `withMutations`.
 | |
|      *
 | |
|      * @see `Map#update`
 | |
|      */
 | |
|     update(index: number, notSetValue: T, updater: (value: T) => T): this;
 | |
|     update(
 | |
|       index: number,
 | |
|       updater: (value: T | undefined) => T | undefined
 | |
|     ): this;
 | |
|     update<R>(updater: (value: this) => R): R;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new List with size `size`. If `size` is less than this
 | |
|      * List's size, the new List will exclude values at the higher indices.
 | |
|      * If `size` is greater than this List's size, the new List will have
 | |
|      * undefined values for the newly available indices.
 | |
|      *
 | |
|      * When building a new List and the final size is known up front, `setSize`
 | |
|      * used in conjunction with `withMutations` may result in the more
 | |
|      * performant construction.
 | |
|      */
 | |
|     setSize(size: number): List<T>;
 | |
| 
 | |
|     // Deep persistent changes
 | |
| 
 | |
|     /**
 | |
|      * Returns a new List having set `value` at this `keyPath`. If any keys in
 | |
|      * `keyPath` do not exist, a new immutable Map will be created at that key.
 | |
|      *
 | |
|      * Index numbers are used as keys to determine the path to follow in
 | |
|      * the List.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { List } = require('immutable')
 | |
|      * const list = List([ 0, 1, 2, List([ 3, 4 ])])
 | |
|      * list.setIn([3, 0], 999);
 | |
|      * // List [ 0, 1, 2, List [ 999, 4 ] ]
 | |
|      * ```
 | |
|      *
 | |
|      * Plain JavaScript Object or Arrays may be nested within an Immutable.js
 | |
|      * Collection, and setIn() can update those values as well, treating them
 | |
|      * immutably by creating new copies of those values with the changes applied.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { List } = require('immutable')
 | |
|      * const list = List([ 0, 1, 2, { plain: 'object' }])
 | |
|      * list.setIn([3, 'plain'], 'value');
 | |
|      * // List([ 0, 1, 2, { plain: 'value' }])
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `setIn` can be used in `withMutations`.
 | |
|      */
 | |
|     setIn(keyPath: Iterable<unknown>, value: unknown): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new List having removed the value at this `keyPath`. If any
 | |
|      * keys in `keyPath` do not exist, no change will occur.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { List } = require('immutable')
 | |
|      * const list = List([ 0, 1, 2, List([ 3, 4 ])])
 | |
|      * list.deleteIn([3, 0]);
 | |
|      * // List [ 0, 1, 2, List [ 4 ] ]
 | |
|      * ```
 | |
|      *
 | |
|      * Plain JavaScript Object or Arrays may be nested within an Immutable.js
 | |
|      * Collection, and removeIn() can update those values as well, treating them
 | |
|      * immutably by creating new copies of those values with the changes applied.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { List } = require('immutable')
 | |
|      * const list = List([ 0, 1, 2, { plain: 'object' }])
 | |
|      * list.removeIn([3, 'plain']);
 | |
|      * // List([ 0, 1, 2, {}])
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `deleteIn` *cannot* be safely used in `withMutations`.
 | |
|      *
 | |
|      * @alias removeIn
 | |
|      */
 | |
|     deleteIn(keyPath: Iterable<unknown>): this;
 | |
|     removeIn(keyPath: Iterable<unknown>): this;
 | |
| 
 | |
|     /**
 | |
|      * Note: `updateIn` can be used in `withMutations`.
 | |
|      *
 | |
|      * @see `Map#updateIn`
 | |
|      */
 | |
|     updateIn(
 | |
|       keyPath: Iterable<unknown>,
 | |
|       notSetValue: unknown,
 | |
|       updater: (value: unknown) => unknown
 | |
|     ): this;
 | |
|     updateIn(
 | |
|       keyPath: Iterable<unknown>,
 | |
|       updater: (value: unknown) => unknown
 | |
|     ): this;
 | |
| 
 | |
|     /**
 | |
|      * Note: `mergeIn` can be used in `withMutations`.
 | |
|      *
 | |
|      * @see `Map#mergeIn`
 | |
|      */
 | |
|     mergeIn(keyPath: Iterable<unknown>, ...collections: Array<unknown>): this;
 | |
| 
 | |
|     /**
 | |
|      * Note: `mergeDeepIn` can be used in `withMutations`.
 | |
|      *
 | |
|      * @see `Map#mergeDeepIn`
 | |
|      */
 | |
|     mergeDeepIn(
 | |
|       keyPath: Iterable<unknown>,
 | |
|       ...collections: Array<unknown>
 | |
|     ): this;
 | |
| 
 | |
|     // Transient changes
 | |
| 
 | |
|     /**
 | |
|      * Note: Not all methods can be safely used on a mutable collection or within
 | |
|      * `withMutations`! Check the documentation for each method to see if it
 | |
|      * allows being used in `withMutations`.
 | |
|      *
 | |
|      * @see `Map#withMutations`
 | |
|      */
 | |
|     withMutations(mutator: (mutable: this) => unknown): this;
 | |
| 
 | |
|     /**
 | |
|      * An alternative API for withMutations()
 | |
|      *
 | |
|      * Note: Not all methods can be safely used on a mutable collection or within
 | |
|      * `withMutations`! Check the documentation for each method to see if it
 | |
|      * allows being used in `withMutations`.
 | |
|      *
 | |
|      * @see `Map#asMutable`
 | |
|      */
 | |
|     asMutable(): this;
 | |
| 
 | |
|     /**
 | |
|      * @see `Map#wasAltered`
 | |
|      */
 | |
|     wasAltered(): boolean;
 | |
| 
 | |
|     /**
 | |
|      * @see `Map#asImmutable`
 | |
|      */
 | |
|     asImmutable(): this;
 | |
| 
 | |
|     // Sequence algorithms
 | |
| 
 | |
|     /**
 | |
|      * Returns a new List with other values or collections concatenated to this one.
 | |
|      *
 | |
|      * Note: `concat` can be used in `withMutations`.
 | |
|      *
 | |
|      * @alias merge
 | |
|      */
 | |
|     concat<C>(...valuesOrCollections: Array<Iterable<C> | C>): List<T | C>;
 | |
|     merge<C>(...collections: Array<Iterable<C>>): List<T | C>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new List with values passed through a
 | |
|      * `mapper` function.
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { List } = require('immutable');" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * List([ 1, 2 ]).map(x => 10 * x)
 | |
|      * // List [ 10, 20 ]
 | |
|      * ```
 | |
|      */
 | |
|     map<M>(
 | |
|       mapper: (value: T, key: number, iter: this) => M,
 | |
|       context?: unknown
 | |
|     ): List<M>;
 | |
| 
 | |
|     /**
 | |
|      * Flat-maps the List, returning a new List.
 | |
|      *
 | |
|      * Similar to `list.map(...).flatten(true)`.
 | |
|      */
 | |
|     flatMap<M>(
 | |
|       mapper: (value: T, key: number, iter: this) => Iterable<M>,
 | |
|       context?: unknown
 | |
|     ): List<M>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new List with only the values for which the `predicate`
 | |
|      * function returns true.
 | |
|      *
 | |
|      * Note: `filter()` always returns a new instance, even if it results in
 | |
|      * not filtering out any values.
 | |
|      */
 | |
|     filter<F extends T>(
 | |
|       predicate: (value: T, index: number, iter: this) => value is F,
 | |
|       context?: unknown
 | |
|     ): List<F>;
 | |
|     filter(
 | |
|       predicate: (value: T, index: number, iter: this) => unknown,
 | |
|       context?: unknown
 | |
|     ): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new List with the values for which the `predicate`
 | |
|      * function returns false and another for which is returns true.
 | |
|      */
 | |
|     partition<F extends T, C>(
 | |
|       predicate: (this: C, value: T, index: number, iter: this) => value is F,
 | |
|       context?: C
 | |
|     ): [List<T>, List<F>];
 | |
|     partition<C>(
 | |
|       predicate: (this: C, value: T, index: number, iter: this) => unknown,
 | |
|       context?: C
 | |
|     ): [this, this];
 | |
| 
 | |
|     /**
 | |
|      * Returns a List "zipped" with the provided collection.
 | |
|      *
 | |
|      * Like `zipWith`, but using the default `zipper`: creating an `Array`.
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { List } = require('immutable');" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * const a = List([ 1, 2, 3 ]);
 | |
|      * const b = List([ 4, 5, 6 ]);
 | |
|      * const c = a.zip(b); // List [ [ 1, 4 ], [ 2, 5 ], [ 3, 6 ] ]
 | |
|      * ```
 | |
|      */
 | |
|     zip<U>(other: Collection<unknown, U>): List<[T, U]>;
 | |
|     zip<U, V>(
 | |
|       other: Collection<unknown, U>,
 | |
|       other2: Collection<unknown, V>
 | |
|     ): List<[T, U, V]>;
 | |
|     zip(...collections: Array<Collection<unknown, unknown>>): List<unknown>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a List "zipped" with the provided collections.
 | |
|      *
 | |
|      * Unlike `zip`, `zipAll` continues zipping until the longest collection is
 | |
|      * exhausted. Missing values from shorter collections are filled with `undefined`.
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { List } = require('immutable');" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * const a = List([ 1, 2 ]);
 | |
|      * const b = List([ 3, 4, 5 ]);
 | |
|      * const c = a.zipAll(b); // List [ [ 1, 3 ], [ 2, 4 ], [ undefined, 5 ] ]
 | |
|      * ```
 | |
|      *
 | |
|      * Note: Since zipAll will return a collection as large as the largest
 | |
|      * input, some results may contain undefined values. TypeScript cannot
 | |
|      * account for these without cases (as of v2.5).
 | |
|      */
 | |
|     zipAll<U>(other: Collection<unknown, U>): List<[T, U]>;
 | |
|     zipAll<U, V>(
 | |
|       other: Collection<unknown, U>,
 | |
|       other2: Collection<unknown, V>
 | |
|     ): List<[T, U, V]>;
 | |
|     zipAll(...collections: Array<Collection<unknown, unknown>>): List<unknown>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a List "zipped" with the provided collections by using a
 | |
|      * custom `zipper` function.
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { List } = require('immutable');" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * const a = List([ 1, 2, 3 ]);
 | |
|      * const b = List([ 4, 5, 6 ]);
 | |
|      * const c = a.zipWith((a, b) => a + b, b);
 | |
|      * // List [ 5, 7, 9 ]
 | |
|      * ```
 | |
|      */
 | |
|     zipWith<U, Z>(
 | |
|       zipper: (value: T, otherValue: U) => Z,
 | |
|       otherCollection: Collection<unknown, U>
 | |
|     ): List<Z>;
 | |
|     zipWith<U, V, Z>(
 | |
|       zipper: (value: T, otherValue: U, thirdValue: V) => Z,
 | |
|       otherCollection: Collection<unknown, U>,
 | |
|       thirdCollection: Collection<unknown, V>
 | |
|     ): List<Z>;
 | |
|     zipWith<Z>(
 | |
|       zipper: (...values: Array<unknown>) => Z,
 | |
|       ...collections: Array<Collection<unknown, unknown>>
 | |
|     ): List<Z>;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Immutable Map is an unordered Collection.Keyed of (key, value) pairs with
 | |
|    * `O(log32 N)` gets and `O(log32 N)` persistent sets.
 | |
|    *
 | |
|    * Iteration order of a Map is undefined, however is stable. Multiple
 | |
|    * iterations of the same Map will iterate in the same order.
 | |
|    *
 | |
|    * Map's keys can be of any type, and use `Immutable.is` to determine key
 | |
|    * equality. This allows the use of any value (including NaN) as a key.
 | |
|    *
 | |
|    * Because `Immutable.is` returns equality based on value semantics, and
 | |
|    * Immutable collections are treated as values, any Immutable collection may
 | |
|    * be used as a key.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { Map, List } = require('immutable');
 | |
|    * Map().set(List([ 1 ]), 'listofone').get(List([ 1 ]));
 | |
|    * // 'listofone'
 | |
|    * ```
 | |
|    *
 | |
|    * Any JavaScript object may be used as a key, however strict identity is used
 | |
|    * to evaluate key equality. Two similar looking objects will represent two
 | |
|    * different keys.
 | |
|    *
 | |
|    * Implemented by a hash-array mapped trie.
 | |
|    */
 | |
|   namespace Map {
 | |
|     /**
 | |
|      * True if the provided value is a Map
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Map } = require('immutable')
 | |
|      * Map.isMap({}) // false
 | |
|      * Map.isMap(Map()) // true
 | |
|      * ```
 | |
|      */
 | |
|     function isMap(maybeMap: unknown): maybeMap is Map<unknown, unknown>;
 | |
| 
 | |
|     /**
 | |
|      * Creates a new Map from alternating keys and values
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Map } = require('immutable')
 | |
|      * Map.of(
 | |
|      *   'key', 'value',
 | |
|      *   'numerical value', 3,
 | |
|      *    0, 'numerical key'
 | |
|      * )
 | |
|      * // Map { 0: "numerical key", "key": "value", "numerical value": 3 }
 | |
|      * ```
 | |
|      *
 | |
|      * @deprecated Use Map([ [ 'k', 'v' ] ]) or Map({ k: 'v' })
 | |
|      */
 | |
|     function of(...keyValues: Array<unknown>): Map<unknown, unknown>;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Creates a new Immutable Map.
 | |
|    *
 | |
|    * Created with the same key value pairs as the provided Collection.Keyed or
 | |
|    * JavaScript Object or expects a Collection of [K, V] tuple entries.
 | |
|    *
 | |
|    * Note: `Map` is a factory function and not a class, and does not use the
 | |
|    * `new` keyword during construction.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { Map } = require('immutable')
 | |
|    * Map({ key: "value" })
 | |
|    * Map([ [ "key", "value" ] ])
 | |
|    * ```
 | |
|    *
 | |
|    * Keep in mind, when using JS objects to construct Immutable Maps, that
 | |
|    * JavaScript Object properties are always strings, even if written in a
 | |
|    * quote-less shorthand, while Immutable Maps accept keys of any type.
 | |
|    *
 | |
|    * <!-- runkit:activate
 | |
|    *      { "preamble": "const { Map } = require('immutable');" }
 | |
|    * -->
 | |
|    * ```js
 | |
|    * let obj = { 1: "one" }
 | |
|    * Object.keys(obj) // [ "1" ]
 | |
|    * assert.equal(obj["1"], obj[1]) // "one" === "one"
 | |
|    *
 | |
|    * let map = Map(obj)
 | |
|    * assert.notEqual(map.get("1"), map.get(1)) // "one" !== undefined
 | |
|    * ```
 | |
|    *
 | |
|    * Property access for JavaScript Objects first converts the key to a string,
 | |
|    * but since Immutable Map keys can be of any type the argument to `get()` is
 | |
|    * not altered.
 | |
|    */
 | |
|   function Map<K, V>(collection?: Iterable<[K, V]>): Map<K, V>;
 | |
|   function Map<V>(obj: { [key: string]: V }): Map<string, V>;
 | |
|   function Map<K extends string | symbol, V>(obj: { [P in K]?: V }): Map<K, V>;
 | |
| 
 | |
|   interface Map<K, V> extends Collection.Keyed<K, V> {
 | |
|     /**
 | |
|      * The number of entries in this Map.
 | |
|      */
 | |
|     readonly size: number;
 | |
| 
 | |
|     // Persistent changes
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Map also containing the new key, value pair. If an equivalent
 | |
|      * key already exists in this Map, it will be replaced.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Map } = require('immutable')
 | |
|      * const originalMap = Map()
 | |
|      * const newerMap = originalMap.set('key', 'value')
 | |
|      * const newestMap = newerMap.set('key', 'newer value')
 | |
|      *
 | |
|      * originalMap
 | |
|      * // Map {}
 | |
|      * newerMap
 | |
|      * // Map { "key": "value" }
 | |
|      * newestMap
 | |
|      * // Map { "key": "newer value" }
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `set` can be used in `withMutations`.
 | |
|      */
 | |
|     set(key: K, value: V): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Map which excludes this `key`.
 | |
|      *
 | |
|      * Note: `delete` cannot be safely used in IE8, but is provided to mirror
 | |
|      * the ES6 collection API.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Map } = require('immutable')
 | |
|      * const originalMap = Map({
 | |
|      *   key: 'value',
 | |
|      *   otherKey: 'other value'
 | |
|      * })
 | |
|      * // Map { "key": "value", "otherKey": "other value" }
 | |
|      * originalMap.delete('otherKey')
 | |
|      * // Map { "key": "value" }
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `delete` can be used in `withMutations`.
 | |
|      *
 | |
|      * @alias remove
 | |
|      */
 | |
|     delete(key: K): this;
 | |
|     remove(key: K): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Map which excludes the provided `keys`.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Map } = require('immutable')
 | |
|      * const names = Map({ a: "Aaron", b: "Barry", c: "Connor" })
 | |
|      * names.deleteAll([ 'a', 'c' ])
 | |
|      * // Map { "b": "Barry" }
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `deleteAll` can be used in `withMutations`.
 | |
|      *
 | |
|      * @alias removeAll
 | |
|      */
 | |
|     deleteAll(keys: Iterable<K>): this;
 | |
|     removeAll(keys: Iterable<K>): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Map containing no keys or values.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Map } = require('immutable')
 | |
|      * Map({ key: 'value' }).clear()
 | |
|      * // Map {}
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `clear` can be used in `withMutations`.
 | |
|      */
 | |
|     clear(): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Map having updated the value at this `key` with the return
 | |
|      * value of calling `updater` with the existing value.
 | |
|      *
 | |
|      * Similar to: `map.set(key, updater(map.get(key)))`.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Map } = require('immutable')
 | |
|      * const aMap = Map({ key: 'value' })
 | |
|      * const newMap = aMap.update('key', value => value + value)
 | |
|      * // Map { "key": "valuevalue" }
 | |
|      * ```
 | |
|      *
 | |
|      * This is most commonly used to call methods on collections within a
 | |
|      * structure of data. For example, in order to `.push()` onto a nested `List`,
 | |
|      * `update` and `push` can be used together:
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { Map, List } = require('immutable');" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * const aMap = Map({ nestedList: List([ 1, 2, 3 ]) })
 | |
|      * const newMap = aMap.update('nestedList', list => list.push(4))
 | |
|      * // Map { "nestedList": List [ 1, 2, 3, 4 ] }
 | |
|      * ```
 | |
|      *
 | |
|      * When a `notSetValue` is provided, it is provided to the `updater`
 | |
|      * function when the value at the key does not exist in the Map.
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { Map } = require('immutable');" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * const aMap = Map({ key: 'value' })
 | |
|      * const newMap = aMap.update('noKey', 'no value', value => value + value)
 | |
|      * // Map { "key": "value", "noKey": "no valueno value" }
 | |
|      * ```
 | |
|      *
 | |
|      * However, if the `updater` function returns the same value it was called
 | |
|      * with, then no change will occur. This is still true if `notSetValue`
 | |
|      * is provided.
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { Map } = require('immutable');" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * const aMap = Map({ apples: 10 })
 | |
|      * const newMap = aMap.update('oranges', 0, val => val)
 | |
|      * // Map { "apples": 10 }
 | |
|      * assert.strictEqual(newMap, map);
 | |
|      * ```
 | |
|      *
 | |
|      * For code using ES2015 or later, using `notSetValue` is discourged in
 | |
|      * favor of function parameter default values. This helps to avoid any
 | |
|      * potential confusion with identify functions as described above.
 | |
|      *
 | |
|      * The previous example behaves differently when written with default values:
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { Map } = require('immutable');" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * const aMap = Map({ apples: 10 })
 | |
|      * const newMap = aMap.update('oranges', (val = 0) => val)
 | |
|      * // Map { "apples": 10, "oranges": 0 }
 | |
|      * ```
 | |
|      *
 | |
|      * If no key is provided, then the `updater` function return value is
 | |
|      * returned as well.
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { Map } = require('immutable');" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * const aMap = Map({ key: 'value' })
 | |
|      * const result = aMap.update(aMap => aMap.get('key'))
 | |
|      * // "value"
 | |
|      * ```
 | |
|      *
 | |
|      * This can be very useful as a way to "chain" a normal function into a
 | |
|      * sequence of methods. RxJS calls this "let" and lodash calls it "thru".
 | |
|      *
 | |
|      * For example, to sum the values in a Map
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { Map } = require('immutable');" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * function sum(collection) {
 | |
|      *   return collection.reduce((sum, x) => sum + x, 0)
 | |
|      * }
 | |
|      *
 | |
|      * Map({ x: 1, y: 2, z: 3 })
 | |
|      *   .map(x => x + 1)
 | |
|      *   .filter(x => x % 2 === 0)
 | |
|      *   .update(sum)
 | |
|      * // 6
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `update(key)` can be used in `withMutations`.
 | |
|      */
 | |
|     update(key: K, notSetValue: V, updater: (value: V) => V): this;
 | |
|     update(key: K, updater: (value: V | undefined) => V | undefined): this;
 | |
|     update<R>(updater: (value: this) => R): R;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Map resulting from merging the provided Collections
 | |
|      * (or JS objects) into this Map. In other words, this takes each entry of
 | |
|      * each collection and sets it on this Map.
 | |
|      *
 | |
|      * Note: Values provided to `merge` are shallowly converted before being
 | |
|      * merged. No nested values are altered.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Map } = require('immutable')
 | |
|      * const one = Map({ a: 10, b: 20, c: 30 })
 | |
|      * const two = Map({ b: 40, a: 50, d: 60 })
 | |
|      * one.merge(two) // Map { "a": 50, "b": 40, "c": 30, "d": 60 }
 | |
|      * two.merge(one) // Map { "b": 20, "a": 10, "d": 60, "c": 30 }
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `merge` can be used in `withMutations`.
 | |
|      *
 | |
|      * @alias concat
 | |
|      */
 | |
|     merge<KC, VC>(
 | |
|       ...collections: Array<Iterable<[KC, VC]>>
 | |
|     ): Map<K | KC, V | VC>;
 | |
|     merge<C>(
 | |
|       ...collections: Array<{ [key: string]: C }>
 | |
|     ): Map<K | string, V | C>;
 | |
|     concat<KC, VC>(
 | |
|       ...collections: Array<Iterable<[KC, VC]>>
 | |
|     ): Map<K | KC, V | VC>;
 | |
|     concat<C>(
 | |
|       ...collections: Array<{ [key: string]: C }>
 | |
|     ): Map<K | string, V | C>;
 | |
| 
 | |
|     /**
 | |
|      * Like `merge()`, `mergeWith()` returns a new Map resulting from merging
 | |
|      * the provided Collections (or JS objects) into this Map, but uses the
 | |
|      * `merger` function for dealing with conflicts.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Map } = require('immutable')
 | |
|      * const one = Map({ a: 10, b: 20, c: 30 })
 | |
|      * const two = Map({ b: 40, a: 50, d: 60 })
 | |
|      * one.mergeWith((oldVal, newVal) => oldVal / newVal, two)
 | |
|      * // { "a": 0.2, "b": 0.5, "c": 30, "d": 60 }
 | |
|      * two.mergeWith((oldVal, newVal) => oldVal / newVal, one)
 | |
|      * // { "b": 2, "a": 5, "d": 60, "c": 30 }
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `mergeWith` can be used in `withMutations`.
 | |
|      */
 | |
|     mergeWith(
 | |
|       merger: (oldVal: V, newVal: V, key: K) => V,
 | |
|       ...collections: Array<Iterable<[K, V]> | { [key: string]: V }>
 | |
|     ): this;
 | |
| 
 | |
|     /**
 | |
|      * Like `merge()`, but when two compatible collections are encountered with
 | |
|      * the same key, it merges them as well, recursing deeply through the nested
 | |
|      * data. Two collections are considered to be compatible (and thus will be
 | |
|      * merged together) if they both fall into one of three categories: keyed
 | |
|      * (e.g., `Map`s, `Record`s, and objects), indexed (e.g., `List`s and
 | |
|      * arrays), or set-like (e.g., `Set`s). If they fall into separate
 | |
|      * categories, `mergeDeep` will replace the existing collection with the
 | |
|      * collection being merged in. This behavior can be customized by using
 | |
|      * `mergeDeepWith()`.
 | |
|      *
 | |
|      * Note: Indexed and set-like collections are merged using
 | |
|      * `concat()`/`union()` and therefore do not recurse.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Map } = require('immutable')
 | |
|      * const one = Map({ a: Map({ x: 10, y: 10 }), b: Map({ x: 20, y: 50 }) })
 | |
|      * const two = Map({ a: Map({ x: 2 }), b: Map({ y: 5 }), c: Map({ z: 3 }) })
 | |
|      * one.mergeDeep(two)
 | |
|      * // Map {
 | |
|      * //   "a": Map { "x": 2, "y": 10 },
 | |
|      * //   "b": Map { "x": 20, "y": 5 },
 | |
|      * //   "c": Map { "z": 3 }
 | |
|      * // }
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `mergeDeep` can be used in `withMutations`.
 | |
|      */
 | |
|     mergeDeep(
 | |
|       ...collections: Array<Iterable<[K, V]> | { [key: string]: V }>
 | |
|     ): this;
 | |
| 
 | |
|     /**
 | |
|      * Like `mergeDeep()`, but when two non-collections or incompatible
 | |
|      * collections are encountered at the same key, it uses the `merger`
 | |
|      * function to determine the resulting value. Collections are considered
 | |
|      * incompatible if they fall into separate categories between keyed,
 | |
|      * indexed, and set-like.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Map } = require('immutable')
 | |
|      * const one = Map({ a: Map({ x: 10, y: 10 }), b: Map({ x: 20, y: 50 }) })
 | |
|      * const two = Map({ a: Map({ x: 2 }), b: Map({ y: 5 }), c: Map({ z: 3 }) })
 | |
|      * one.mergeDeepWith((oldVal, newVal) => oldVal / newVal, two)
 | |
|      * // Map {
 | |
|      * //   "a": Map { "x": 5, "y": 10 },
 | |
|      * //   "b": Map { "x": 20, "y": 10 },
 | |
|      * //   "c": Map { "z": 3 }
 | |
|      * // }
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `mergeDeepWith` can be used in `withMutations`.
 | |
|      */
 | |
|     mergeDeepWith(
 | |
|       merger: (oldVal: unknown, newVal: unknown, key: unknown) => unknown,
 | |
|       ...collections: Array<Iterable<[K, V]> | { [key: string]: V }>
 | |
|     ): this;
 | |
| 
 | |
|     // Deep persistent changes
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Map having set `value` at this `keyPath`. If any keys in
 | |
|      * `keyPath` do not exist, a new immutable Map will be created at that key.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Map } = require('immutable')
 | |
|      * const originalMap = Map({
 | |
|      *   subObject: Map({
 | |
|      *     subKey: 'subvalue',
 | |
|      *     subSubObject: Map({
 | |
|      *       subSubKey: 'subSubValue'
 | |
|      *     })
 | |
|      *   })
 | |
|      * })
 | |
|      *
 | |
|      * const newMap = originalMap.setIn(['subObject', 'subKey'], 'ha ha!')
 | |
|      * // Map {
 | |
|      * //   "subObject": Map {
 | |
|      * //     "subKey": "ha ha!",
 | |
|      * //     "subSubObject": Map { "subSubKey": "subSubValue" }
 | |
|      * //   }
 | |
|      * // }
 | |
|      *
 | |
|      * const newerMap = originalMap.setIn(
 | |
|      *   ['subObject', 'subSubObject', 'subSubKey'],
 | |
|      *   'ha ha ha!'
 | |
|      * )
 | |
|      * // Map {
 | |
|      * //   "subObject": Map {
 | |
|      * //     "subKey": "subvalue",
 | |
|      * //     "subSubObject": Map { "subSubKey": "ha ha ha!" }
 | |
|      * //   }
 | |
|      * // }
 | |
|      * ```
 | |
|      *
 | |
|      * Plain JavaScript Object or Arrays may be nested within an Immutable.js
 | |
|      * Collection, and setIn() can update those values as well, treating them
 | |
|      * immutably by creating new copies of those values with the changes applied.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Map } = require('immutable')
 | |
|      * const originalMap = Map({
 | |
|      *   subObject: {
 | |
|      *     subKey: 'subvalue',
 | |
|      *     subSubObject: {
 | |
|      *       subSubKey: 'subSubValue'
 | |
|      *     }
 | |
|      *   }
 | |
|      * })
 | |
|      *
 | |
|      * originalMap.setIn(['subObject', 'subKey'], 'ha ha!')
 | |
|      * // Map {
 | |
|      * //   "subObject": {
 | |
|      * //     subKey: "ha ha!",
 | |
|      * //     subSubObject: { subSubKey: "subSubValue" }
 | |
|      * //   }
 | |
|      * // }
 | |
|      * ```
 | |
|      *
 | |
|      * If any key in the path exists but cannot be updated (such as a primitive
 | |
|      * like number or a custom Object like Date), an error will be thrown.
 | |
|      *
 | |
|      * Note: `setIn` can be used in `withMutations`.
 | |
|      */
 | |
|     setIn(keyPath: Iterable<unknown>, value: unknown): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Map having removed the value at this `keyPath`. If any keys
 | |
|      * in `keyPath` do not exist, no change will occur.
 | |
|      *
 | |
|      * Note: `deleteIn` can be used in `withMutations`.
 | |
|      *
 | |
|      * @alias removeIn
 | |
|      */
 | |
|     deleteIn(keyPath: Iterable<unknown>): this;
 | |
|     removeIn(keyPath: Iterable<unknown>): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Map having applied the `updater` to the entry found at the
 | |
|      * keyPath.
 | |
|      *
 | |
|      * This is most commonly used to call methods on collections nested within a
 | |
|      * structure of data. For example, in order to `.push()` onto a nested `List`,
 | |
|      * `updateIn` and `push` can be used together:
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Map, List } = require('immutable')
 | |
|      * const map = Map({ inMap: Map({ inList: List([ 1, 2, 3 ]) }) })
 | |
|      * const newMap = map.updateIn(['inMap', 'inList'], list => list.push(4))
 | |
|      * // Map { "inMap": Map { "inList": List [ 1, 2, 3, 4 ] } }
 | |
|      * ```
 | |
|      *
 | |
|      * If any keys in `keyPath` do not exist, new Immutable `Map`s will
 | |
|      * be created at those keys. If the `keyPath` does not already contain a
 | |
|      * value, the `updater` function will be called with `notSetValue`, if
 | |
|      * provided, otherwise `undefined`.
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { Map } = require('immutable')" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * const map = Map({ a: Map({ b: Map({ c: 10 }) }) })
 | |
|      * const newMap = map.updateIn(['a', 'b', 'c'], val => val * 2)
 | |
|      * // Map { "a": Map { "b": Map { "c": 20 } } }
 | |
|      * ```
 | |
|      *
 | |
|      * If the `updater` function returns the same value it was called with, then
 | |
|      * no change will occur. This is still true if `notSetValue` is provided.
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { Map } = require('immutable')" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * const map = Map({ a: Map({ b: Map({ c: 10 }) }) })
 | |
|      * const newMap = map.updateIn(['a', 'b', 'x'], 100, val => val)
 | |
|      * // Map { "a": Map { "b": Map { "c": 10 } } }
 | |
|      * assert.strictEqual(newMap, aMap)
 | |
|      * ```
 | |
|      *
 | |
|      * For code using ES2015 or later, using `notSetValue` is discourged in
 | |
|      * favor of function parameter default values. This helps to avoid any
 | |
|      * potential confusion with identify functions as described above.
 | |
|      *
 | |
|      * The previous example behaves differently when written with default values:
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { Map } = require('immutable')" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * const map = Map({ a: Map({ b: Map({ c: 10 }) }) })
 | |
|      * const newMap = map.updateIn(['a', 'b', 'x'], (val = 100) => val)
 | |
|      * // Map { "a": Map { "b": Map { "c": 10, "x": 100 } } }
 | |
|      * ```
 | |
|      *
 | |
|      * Plain JavaScript Object or Arrays may be nested within an Immutable.js
 | |
|      * Collection, and updateIn() can update those values as well, treating them
 | |
|      * immutably by creating new copies of those values with the changes applied.
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { Map } = require('immutable')" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * const map = Map({ a: { b: { c: 10 } } })
 | |
|      * const newMap = map.updateIn(['a', 'b', 'c'], val => val * 2)
 | |
|      * // Map { "a": { b: { c: 20 } } }
 | |
|      * ```
 | |
|      *
 | |
|      * If any key in the path exists but cannot be updated (such as a primitive
 | |
|      * like number or a custom Object like Date), an error will be thrown.
 | |
|      *
 | |
|      * Note: `updateIn` can be used in `withMutations`.
 | |
|      */
 | |
|     updateIn(
 | |
|       keyPath: Iterable<unknown>,
 | |
|       notSetValue: unknown,
 | |
|       updater: (value: unknown) => unknown
 | |
|     ): this;
 | |
|     updateIn(
 | |
|       keyPath: Iterable<unknown>,
 | |
|       updater: (value: unknown) => unknown
 | |
|     ): this;
 | |
| 
 | |
|     /**
 | |
|      * A combination of `updateIn` and `merge`, returning a new Map, but
 | |
|      * performing the merge at a point arrived at by following the keyPath.
 | |
|      * In other words, these two lines are equivalent:
 | |
|      *
 | |
|      * ```js
 | |
|      * map.updateIn(['a', 'b', 'c'], abc => abc.merge(y))
 | |
|      * map.mergeIn(['a', 'b', 'c'], y)
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `mergeIn` can be used in `withMutations`.
 | |
|      */
 | |
|     mergeIn(keyPath: Iterable<unknown>, ...collections: Array<unknown>): this;
 | |
| 
 | |
|     /**
 | |
|      * A combination of `updateIn` and `mergeDeep`, returning a new Map, but
 | |
|      * performing the deep merge at a point arrived at by following the keyPath.
 | |
|      * In other words, these two lines are equivalent:
 | |
|      *
 | |
|      * ```js
 | |
|      * map.updateIn(['a', 'b', 'c'], abc => abc.mergeDeep(y))
 | |
|      * map.mergeDeepIn(['a', 'b', 'c'], y)
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `mergeDeepIn` can be used in `withMutations`.
 | |
|      */
 | |
|     mergeDeepIn(
 | |
|       keyPath: Iterable<unknown>,
 | |
|       ...collections: Array<unknown>
 | |
|     ): this;
 | |
| 
 | |
|     // Transient changes
 | |
| 
 | |
|     /**
 | |
|      * Every time you call one of the above functions, a new immutable Map is
 | |
|      * created. If a pure function calls a number of these to produce a final
 | |
|      * return value, then a penalty on performance and memory has been paid by
 | |
|      * creating all of the intermediate immutable Maps.
 | |
|      *
 | |
|      * If you need to apply a series of mutations to produce a new immutable
 | |
|      * Map, `withMutations()` creates a temporary mutable copy of the Map which
 | |
|      * can apply mutations in a highly performant manner. In fact, this is
 | |
|      * exactly how complex mutations like `merge` are done.
 | |
|      *
 | |
|      * As an example, this results in the creation of 2, not 4, new Maps:
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Map } = require('immutable')
 | |
|      * const map1 = Map()
 | |
|      * const map2 = map1.withMutations(map => {
 | |
|      *   map.set('a', 1).set('b', 2).set('c', 3)
 | |
|      * })
 | |
|      * assert.equal(map1.size, 0)
 | |
|      * assert.equal(map2.size, 3)
 | |
|      * ```
 | |
|      *
 | |
|      * Note: Not all methods can be used on a mutable collection or within
 | |
|      * `withMutations`! Read the documentation for each method to see if it
 | |
|      * is safe to use in `withMutations`.
 | |
|      */
 | |
|     withMutations(mutator: (mutable: this) => unknown): this;
 | |
| 
 | |
|     /**
 | |
|      * Another way to avoid creation of intermediate Immutable maps is to create
 | |
|      * a mutable copy of this collection. Mutable copies *always* return `this`,
 | |
|      * and thus shouldn't be used for equality. Your function should never return
 | |
|      * a mutable copy of a collection, only use it internally to create a new
 | |
|      * collection.
 | |
|      *
 | |
|      * If possible, use `withMutations` to work with temporary mutable copies as
 | |
|      * it provides an easier to use API and considers many common optimizations.
 | |
|      *
 | |
|      * Note: if the collection is already mutable, `asMutable` returns itself.
 | |
|      *
 | |
|      * Note: Not all methods can be used on a mutable collection or within
 | |
|      * `withMutations`! Read the documentation for each method to see if it
 | |
|      * is safe to use in `withMutations`.
 | |
|      *
 | |
|      * @see `Map#asImmutable`
 | |
|      */
 | |
|     asMutable(): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns true if this is a mutable copy (see `asMutable()`) and mutative
 | |
|      * alterations have been applied.
 | |
|      *
 | |
|      * @see `Map#asMutable`
 | |
|      */
 | |
|     wasAltered(): boolean;
 | |
| 
 | |
|     /**
 | |
|      * The yin to `asMutable`'s yang. Because it applies to mutable collections,
 | |
|      * this operation is *mutable* and may return itself (though may not
 | |
|      * return itself, i.e. if the result is an empty collection). Once
 | |
|      * performed, the original mutable copy must no longer be mutated since it
 | |
|      * may be the immutable result.
 | |
|      *
 | |
|      * If possible, use `withMutations` to work with temporary mutable copies as
 | |
|      * it provides an easier to use API and considers many common optimizations.
 | |
|      *
 | |
|      * @see `Map#asMutable`
 | |
|      */
 | |
|     asImmutable(): this;
 | |
| 
 | |
|     // Sequence algorithms
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Map with values passed through a
 | |
|      * `mapper` function.
 | |
|      *
 | |
|      *     Map({ a: 1, b: 2 }).map(x => 10 * x)
 | |
|      *     // Map { a: 10, b: 20 }
 | |
|      */
 | |
|     map<M>(
 | |
|       mapper: (value: V, key: K, iter: this) => M,
 | |
|       context?: unknown
 | |
|     ): Map<K, M>;
 | |
| 
 | |
|     /**
 | |
|      * @see Collection.Keyed.mapKeys
 | |
|      */
 | |
|     mapKeys<M>(
 | |
|       mapper: (key: K, value: V, iter: this) => M,
 | |
|       context?: unknown
 | |
|     ): Map<M, V>;
 | |
| 
 | |
|     /**
 | |
|      * @see Collection.Keyed.mapEntries
 | |
|      */
 | |
|     mapEntries<KM, VM>(
 | |
|       mapper: (
 | |
|         entry: [K, V],
 | |
|         index: number,
 | |
|         iter: this
 | |
|       ) => [KM, VM] | undefined,
 | |
|       context?: unknown
 | |
|     ): Map<KM, VM>;
 | |
| 
 | |
|     /**
 | |
|      * Flat-maps the Map, returning a new Map.
 | |
|      *
 | |
|      * Similar to `data.map(...).flatten(true)`.
 | |
|      */
 | |
|     flatMap<KM, VM>(
 | |
|       mapper: (value: V, key: K, iter: this) => Iterable<[KM, VM]>,
 | |
|       context?: unknown
 | |
|     ): Map<KM, VM>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Map with only the entries for which the `predicate`
 | |
|      * function returns true.
 | |
|      *
 | |
|      * Note: `filter()` always returns a new instance, even if it results in
 | |
|      * not filtering out any values.
 | |
|      */
 | |
|     filter<F extends V>(
 | |
|       predicate: (value: V, key: K, iter: this) => value is F,
 | |
|       context?: unknown
 | |
|     ): Map<K, F>;
 | |
|     filter(
 | |
|       predicate: (value: V, key: K, iter: this) => unknown,
 | |
|       context?: unknown
 | |
|     ): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Map with the values for which the `predicate`
 | |
|      * function returns false and another for which is returns true.
 | |
|      */
 | |
|     partition<F extends V, C>(
 | |
|       predicate: (this: C, value: V, key: K, iter: this) => value is F,
 | |
|       context?: C
 | |
|     ): [Map<K, V>, Map<K, F>];
 | |
|     partition<C>(
 | |
|       predicate: (this: C, value: V, key: K, iter: this) => unknown,
 | |
|       context?: C
 | |
|     ): [this, this];
 | |
| 
 | |
|     /**
 | |
|      * @see Collection.Keyed.flip
 | |
|      */
 | |
|     flip(): Map<V, K>;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * A type of Map that has the additional guarantee that the iteration order of
 | |
|    * entries will be the order in which they were set().
 | |
|    *
 | |
|    * The iteration behavior of OrderedMap is the same as native ES6 Map and
 | |
|    * JavaScript Object.
 | |
|    *
 | |
|    * Note that `OrderedMap` are more expensive than non-ordered `Map` and may
 | |
|    * consume more memory. `OrderedMap#set` is amortized O(log32 N), but not
 | |
|    * stable.
 | |
|    */
 | |
|   namespace OrderedMap {
 | |
|     /**
 | |
|      * True if the provided value is an OrderedMap.
 | |
|      */
 | |
|     function isOrderedMap(
 | |
|       maybeOrderedMap: unknown
 | |
|     ): maybeOrderedMap is OrderedMap<unknown, unknown>;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Creates a new Immutable OrderedMap.
 | |
|    *
 | |
|    * Created with the same key value pairs as the provided Collection.Keyed or
 | |
|    * JavaScript Object or expects a Collection of [K, V] tuple entries.
 | |
|    *
 | |
|    * The iteration order of key-value pairs provided to this constructor will
 | |
|    * be preserved in the OrderedMap.
 | |
|    *
 | |
|    *     let newOrderedMap = OrderedMap({key: "value"})
 | |
|    *     let newOrderedMap = OrderedMap([["key", "value"]])
 | |
|    *
 | |
|    * Note: `OrderedMap` is a factory function and not a class, and does not use
 | |
|    * the `new` keyword during construction.
 | |
|    */
 | |
|   function OrderedMap<K, V>(collection?: Iterable<[K, V]>): OrderedMap<K, V>;
 | |
|   function OrderedMap<V>(obj: { [key: string]: V }): OrderedMap<string, V>;
 | |
| 
 | |
|   interface OrderedMap<K, V> extends Map<K, V> {
 | |
|     /**
 | |
|      * The number of entries in this OrderedMap.
 | |
|      */
 | |
|     readonly size: number;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new OrderedMap also containing the new key, value pair. If an
 | |
|      * equivalent key already exists in this OrderedMap, it will be replaced
 | |
|      * while maintaining the existing order.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { OrderedMap } = require('immutable')
 | |
|      * const originalMap = OrderedMap({a:1, b:1, c:1})
 | |
|      * const updatedMap = originalMap.set('b', 2)
 | |
|      *
 | |
|      * originalMap
 | |
|      * // OrderedMap {a: 1, b: 1, c: 1}
 | |
|      * updatedMap
 | |
|      * // OrderedMap {a: 1, b: 2, c: 1}
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `set` can be used in `withMutations`.
 | |
|      */
 | |
|     set(key: K, value: V): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new OrderedMap resulting from merging the provided Collections
 | |
|      * (or JS objects) into this OrderedMap. In other words, this takes each
 | |
|      * entry of each collection and sets it on this OrderedMap.
 | |
|      *
 | |
|      * Note: Values provided to `merge` are shallowly converted before being
 | |
|      * merged. No nested values are altered.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { OrderedMap } = require('immutable')
 | |
|      * const one = OrderedMap({ a: 10, b: 20, c: 30 })
 | |
|      * const two = OrderedMap({ b: 40, a: 50, d: 60 })
 | |
|      * one.merge(two) // OrderedMap { "a": 50, "b": 40, "c": 30, "d": 60 }
 | |
|      * two.merge(one) // OrderedMap { "b": 20, "a": 10, "d": 60, "c": 30 }
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `merge` can be used in `withMutations`.
 | |
|      *
 | |
|      * @alias concat
 | |
|      */
 | |
|     merge<KC, VC>(
 | |
|       ...collections: Array<Iterable<[KC, VC]>>
 | |
|     ): OrderedMap<K | KC, V | VC>;
 | |
|     merge<C>(
 | |
|       ...collections: Array<{ [key: string]: C }>
 | |
|     ): OrderedMap<K | string, V | C>;
 | |
|     concat<KC, VC>(
 | |
|       ...collections: Array<Iterable<[KC, VC]>>
 | |
|     ): OrderedMap<K | KC, V | VC>;
 | |
|     concat<C>(
 | |
|       ...collections: Array<{ [key: string]: C }>
 | |
|     ): OrderedMap<K | string, V | C>;
 | |
| 
 | |
|     // Sequence algorithms
 | |
| 
 | |
|     /**
 | |
|      * Returns a new OrderedMap with values passed through a
 | |
|      * `mapper` function.
 | |
|      *
 | |
|      *     OrderedMap({ a: 1, b: 2 }).map(x => 10 * x)
 | |
|      *     // OrderedMap { "a": 10, "b": 20 }
 | |
|      *
 | |
|      * Note: `map()` always returns a new instance, even if it produced the same
 | |
|      * value at every step.
 | |
|      */
 | |
|     map<M>(
 | |
|       mapper: (value: V, key: K, iter: this) => M,
 | |
|       context?: unknown
 | |
|     ): OrderedMap<K, M>;
 | |
| 
 | |
|     /**
 | |
|      * @see Collection.Keyed.mapKeys
 | |
|      */
 | |
|     mapKeys<M>(
 | |
|       mapper: (key: K, value: V, iter: this) => M,
 | |
|       context?: unknown
 | |
|     ): OrderedMap<M, V>;
 | |
| 
 | |
|     /**
 | |
|      * @see Collection.Keyed.mapEntries
 | |
|      */
 | |
|     mapEntries<KM, VM>(
 | |
|       mapper: (
 | |
|         entry: [K, V],
 | |
|         index: number,
 | |
|         iter: this
 | |
|       ) => [KM, VM] | undefined,
 | |
|       context?: unknown
 | |
|     ): OrderedMap<KM, VM>;
 | |
| 
 | |
|     /**
 | |
|      * Flat-maps the OrderedMap, returning a new OrderedMap.
 | |
|      *
 | |
|      * Similar to `data.map(...).flatten(true)`.
 | |
|      */
 | |
|     flatMap<KM, VM>(
 | |
|       mapper: (value: V, key: K, iter: this) => Iterable<[KM, VM]>,
 | |
|       context?: unknown
 | |
|     ): OrderedMap<KM, VM>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new OrderedMap with only the entries for which the `predicate`
 | |
|      * function returns true.
 | |
|      *
 | |
|      * Note: `filter()` always returns a new instance, even if it results in
 | |
|      * not filtering out any values.
 | |
|      */
 | |
|     filter<F extends V>(
 | |
|       predicate: (value: V, key: K, iter: this) => value is F,
 | |
|       context?: unknown
 | |
|     ): OrderedMap<K, F>;
 | |
|     filter(
 | |
|       predicate: (value: V, key: K, iter: this) => unknown,
 | |
|       context?: unknown
 | |
|     ): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new OrderedMap with the values for which the `predicate`
 | |
|      * function returns false and another for which is returns true.
 | |
|      */
 | |
|     partition<F extends V, C>(
 | |
|       predicate: (this: C, value: V, key: K, iter: this) => value is F,
 | |
|       context?: C
 | |
|     ): [OrderedMap<K, V>, OrderedMap<K, F>];
 | |
|     partition<C>(
 | |
|       predicate: (this: C, value: V, key: K, iter: this) => unknown,
 | |
|       context?: C
 | |
|     ): [this, this];
 | |
| 
 | |
|     /**
 | |
|      * @see Collection.Keyed.flip
 | |
|      */
 | |
|     flip(): OrderedMap<V, K>;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * A Collection of unique values with `O(log32 N)` adds and has.
 | |
|    *
 | |
|    * When iterating a Set, the entries will be (value, value) pairs. Iteration
 | |
|    * order of a Set is undefined, however is stable. Multiple iterations of the
 | |
|    * same Set will iterate in the same order.
 | |
|    *
 | |
|    * Set values, like Map keys, may be of any type. Equality is determined using
 | |
|    * `Immutable.is`, enabling Sets to uniquely include other Immutable
 | |
|    * collections, custom value types, and NaN.
 | |
|    */
 | |
|   namespace Set {
 | |
|     /**
 | |
|      * True if the provided value is a Set
 | |
|      */
 | |
|     function isSet(maybeSet: unknown): maybeSet is Set<unknown>;
 | |
| 
 | |
|     /**
 | |
|      * Creates a new Set containing `values`.
 | |
|      */
 | |
|     function of<T>(...values: Array<T>): Set<T>;
 | |
| 
 | |
|     /**
 | |
|      * `Set.fromKeys()` creates a new immutable Set containing the keys from
 | |
|      * this Collection or JavaScript Object.
 | |
|      */
 | |
|     function fromKeys<T>(iter: Collection.Keyed<T, unknown>): Set<T>;
 | |
|     // tslint:disable-next-line unified-signatures
 | |
|     function fromKeys<T>(iter: Collection<T, unknown>): Set<T>;
 | |
|     function fromKeys(obj: { [key: string]: unknown }): Set<string>;
 | |
| 
 | |
|     /**
 | |
|      * `Set.intersect()` creates a new immutable Set that is the intersection of
 | |
|      * a collection of other sets.
 | |
|      *
 | |
|      * ```js
 | |
|      * const { Set } = require('immutable')
 | |
|      * const intersected = Set.intersect([
 | |
|      *   Set([ 'a', 'b', 'c' ])
 | |
|      *   Set([ 'c', 'a', 't' ])
 | |
|      * ])
 | |
|      * // Set [ "a", "c" ]
 | |
|      * ```
 | |
|      */
 | |
|     function intersect<T>(sets: Iterable<Iterable<T>>): Set<T>;
 | |
| 
 | |
|     /**
 | |
|      * `Set.union()` creates a new immutable Set that is the union of a
 | |
|      * collection of other sets.
 | |
|      *
 | |
|      * ```js
 | |
|      * const { Set } = require('immutable')
 | |
|      * const unioned = Set.union([
 | |
|      *   Set([ 'a', 'b', 'c' ])
 | |
|      *   Set([ 'c', 'a', 't' ])
 | |
|      * ])
 | |
|      * // Set [ "a", "b", "c", "t" ]
 | |
|      * ```
 | |
|      */
 | |
|     function union<T>(sets: Iterable<Iterable<T>>): Set<T>;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Create a new immutable Set containing the values of the provided
 | |
|    * collection-like.
 | |
|    *
 | |
|    * Note: `Set` is a factory function and not a class, and does not use the
 | |
|    * `new` keyword during construction.
 | |
|    */
 | |
|   function Set<T>(collection?: Iterable<T> | ArrayLike<T>): Set<T>;
 | |
| 
 | |
|   interface Set<T> extends Collection.Set<T> {
 | |
|     /**
 | |
|      * The number of items in this Set.
 | |
|      */
 | |
|     readonly size: number;
 | |
| 
 | |
|     // Persistent changes
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Set which also includes this value.
 | |
|      *
 | |
|      * Note: `add` can be used in `withMutations`.
 | |
|      */
 | |
|     add(value: T): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Set which excludes this value.
 | |
|      *
 | |
|      * Note: `delete` can be used in `withMutations`.
 | |
|      *
 | |
|      * Note: `delete` **cannot** be safely used in IE8, use `remove` if
 | |
|      * supporting old browsers.
 | |
|      *
 | |
|      * @alias remove
 | |
|      */
 | |
|     delete(value: T): this;
 | |
|     remove(value: T): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Set containing no values.
 | |
|      *
 | |
|      * Note: `clear` can be used in `withMutations`.
 | |
|      */
 | |
|     clear(): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a Set including any value from `collections` that does not already
 | |
|      * exist in this Set.
 | |
|      *
 | |
|      * Note: `union` can be used in `withMutations`.
 | |
|      * @alias merge
 | |
|      * @alias concat
 | |
|      */
 | |
|     union<C>(...collections: Array<Iterable<C>>): Set<T | C>;
 | |
|     merge<C>(...collections: Array<Iterable<C>>): Set<T | C>;
 | |
|     concat<C>(...collections: Array<Iterable<C>>): Set<T | C>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a Set which has removed any values not also contained
 | |
|      * within `collections`.
 | |
|      *
 | |
|      * Note: `intersect` can be used in `withMutations`.
 | |
|      */
 | |
|     intersect(...collections: Array<Iterable<T>>): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a Set excluding any values contained within `collections`.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { OrderedSet } = require('immutable')
 | |
|      * OrderedSet([ 1, 2, 3 ]).subtract([1, 3])
 | |
|      * // OrderedSet [2]
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `subtract` can be used in `withMutations`.
 | |
|      */
 | |
|     subtract(...collections: Array<Iterable<T>>): this;
 | |
| 
 | |
|     // Transient changes
 | |
| 
 | |
|     /**
 | |
|      * Note: Not all methods can be used on a mutable collection or within
 | |
|      * `withMutations`! Check the documentation for each method to see if it
 | |
|      * mentions being safe to use in `withMutations`.
 | |
|      *
 | |
|      * @see `Map#withMutations`
 | |
|      */
 | |
|     withMutations(mutator: (mutable: this) => unknown): this;
 | |
| 
 | |
|     /**
 | |
|      * Note: Not all methods can be used on a mutable collection or within
 | |
|      * `withMutations`! Check the documentation for each method to see if it
 | |
|      * mentions being safe to use in `withMutations`.
 | |
|      *
 | |
|      * @see `Map#asMutable`
 | |
|      */
 | |
|     asMutable(): this;
 | |
| 
 | |
|     /**
 | |
|      * @see `Map#wasAltered`
 | |
|      */
 | |
|     wasAltered(): boolean;
 | |
| 
 | |
|     /**
 | |
|      * @see `Map#asImmutable`
 | |
|      */
 | |
|     asImmutable(): this;
 | |
| 
 | |
|     // Sequence algorithms
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Set with values passed through a
 | |
|      * `mapper` function.
 | |
|      *
 | |
|      *     Set([1,2]).map(x => 10 * x)
 | |
|      *     // Set [10,20]
 | |
|      */
 | |
|     map<M>(
 | |
|       mapper: (value: T, key: T, iter: this) => M,
 | |
|       context?: unknown
 | |
|     ): Set<M>;
 | |
| 
 | |
|     /**
 | |
|      * Flat-maps the Set, returning a new Set.
 | |
|      *
 | |
|      * Similar to `set.map(...).flatten(true)`.
 | |
|      */
 | |
|     flatMap<M>(
 | |
|       mapper: (value: T, key: T, iter: this) => Iterable<M>,
 | |
|       context?: unknown
 | |
|     ): Set<M>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Set with only the values for which the `predicate`
 | |
|      * function returns true.
 | |
|      *
 | |
|      * Note: `filter()` always returns a new instance, even if it results in
 | |
|      * not filtering out any values.
 | |
|      */
 | |
|     filter<F extends T>(
 | |
|       predicate: (value: T, key: T, iter: this) => value is F,
 | |
|       context?: unknown
 | |
|     ): Set<F>;
 | |
|     filter(
 | |
|       predicate: (value: T, key: T, iter: this) => unknown,
 | |
|       context?: unknown
 | |
|     ): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Set with the values for which the `predicate` function
 | |
|      * returns false and another for which is returns true.
 | |
|      */
 | |
|     partition<F extends T, C>(
 | |
|       predicate: (this: C, value: T, key: T, iter: this) => value is F,
 | |
|       context?: C
 | |
|     ): [Set<T>, Set<F>];
 | |
|     partition<C>(
 | |
|       predicate: (this: C, value: T, key: T, iter: this) => unknown,
 | |
|       context?: C
 | |
|     ): [this, this];
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * A type of Set that has the additional guarantee that the iteration order of
 | |
|    * values will be the order in which they were `add`ed.
 | |
|    *
 | |
|    * The iteration behavior of OrderedSet is the same as native ES6 Set.
 | |
|    *
 | |
|    * Note that `OrderedSet` are more expensive than non-ordered `Set` and may
 | |
|    * consume more memory. `OrderedSet#add` is amortized O(log32 N), but not
 | |
|    * stable.
 | |
|    */
 | |
|   namespace OrderedSet {
 | |
|     /**
 | |
|      * True if the provided value is an OrderedSet.
 | |
|      */
 | |
|     function isOrderedSet(
 | |
|       maybeOrderedSet: unknown
 | |
|     ): maybeOrderedSet is OrderedSet<unknown>;
 | |
| 
 | |
|     /**
 | |
|      * Creates a new OrderedSet containing `values`.
 | |
|      */
 | |
|     function of<T>(...values: Array<T>): OrderedSet<T>;
 | |
| 
 | |
|     /**
 | |
|      * `OrderedSet.fromKeys()` creates a new immutable OrderedSet containing
 | |
|      * the keys from this Collection or JavaScript Object.
 | |
|      */
 | |
|     function fromKeys<T>(iter: Collection.Keyed<T, unknown>): OrderedSet<T>;
 | |
|     // tslint:disable-next-line unified-signatures
 | |
|     function fromKeys<T>(iter: Collection<T, unknown>): OrderedSet<T>;
 | |
|     function fromKeys(obj: { [key: string]: unknown }): OrderedSet<string>;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Create a new immutable OrderedSet containing the values of the provided
 | |
|    * collection-like.
 | |
|    *
 | |
|    * Note: `OrderedSet` is a factory function and not a class, and does not use
 | |
|    * the `new` keyword during construction.
 | |
|    */
 | |
|   function OrderedSet<T>(
 | |
|     collection?: Iterable<T> | ArrayLike<T>
 | |
|   ): OrderedSet<T>;
 | |
| 
 | |
|   interface OrderedSet<T> extends Set<T> {
 | |
|     /**
 | |
|      * The number of items in this OrderedSet.
 | |
|      */
 | |
|     readonly size: number;
 | |
| 
 | |
|     /**
 | |
|      * Returns an OrderedSet including any value from `collections` that does
 | |
|      * not already exist in this OrderedSet.
 | |
|      *
 | |
|      * Note: `union` can be used in `withMutations`.
 | |
|      * @alias merge
 | |
|      * @alias concat
 | |
|      */
 | |
|     union<C>(...collections: Array<Iterable<C>>): OrderedSet<T | C>;
 | |
|     merge<C>(...collections: Array<Iterable<C>>): OrderedSet<T | C>;
 | |
|     concat<C>(...collections: Array<Iterable<C>>): OrderedSet<T | C>;
 | |
| 
 | |
|     // Sequence algorithms
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Set with values passed through a
 | |
|      * `mapper` function.
 | |
|      *
 | |
|      *     OrderedSet([ 1, 2 ]).map(x => 10 * x)
 | |
|      *     // OrderedSet [10, 20]
 | |
|      */
 | |
|     map<M>(
 | |
|       mapper: (value: T, key: T, iter: this) => M,
 | |
|       context?: unknown
 | |
|     ): OrderedSet<M>;
 | |
| 
 | |
|     /**
 | |
|      * Flat-maps the OrderedSet, returning a new OrderedSet.
 | |
|      *
 | |
|      * Similar to `set.map(...).flatten(true)`.
 | |
|      */
 | |
|     flatMap<M>(
 | |
|       mapper: (value: T, key: T, iter: this) => Iterable<M>,
 | |
|       context?: unknown
 | |
|     ): OrderedSet<M>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new OrderedSet with only the values for which the `predicate`
 | |
|      * function returns true.
 | |
|      *
 | |
|      * Note: `filter()` always returns a new instance, even if it results in
 | |
|      * not filtering out any values.
 | |
|      */
 | |
|     filter<F extends T>(
 | |
|       predicate: (value: T, key: T, iter: this) => value is F,
 | |
|       context?: unknown
 | |
|     ): OrderedSet<F>;
 | |
|     filter(
 | |
|       predicate: (value: T, key: T, iter: this) => unknown,
 | |
|       context?: unknown
 | |
|     ): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new OrderedSet with the values for which the `predicate`
 | |
|      * function returns false and another for which is returns true.
 | |
|      */
 | |
|     partition<F extends T, C>(
 | |
|       predicate: (this: C, value: T, key: T, iter: this) => value is F,
 | |
|       context?: C
 | |
|     ): [OrderedSet<T>, OrderedSet<F>];
 | |
|     partition<C>(
 | |
|       predicate: (this: C, value: T, key: T, iter: this) => unknown,
 | |
|       context?: C
 | |
|     ): [this, this];
 | |
| 
 | |
|     /**
 | |
|      * Returns an OrderedSet of the same type "zipped" with the provided
 | |
|      * collections.
 | |
|      *
 | |
|      * Like `zipWith`, but using the default `zipper`: creating an `Array`.
 | |
|      *
 | |
|      * ```js
 | |
|      * const a = OrderedSet([ 1, 2, 3 ])
 | |
|      * const b = OrderedSet([ 4, 5, 6 ])
 | |
|      * const c = a.zip(b)
 | |
|      * // OrderedSet [ [ 1, 4 ], [ 2, 5 ], [ 3, 6 ] ]
 | |
|      * ```
 | |
|      */
 | |
|     zip<U>(other: Collection<unknown, U>): OrderedSet<[T, U]>;
 | |
|     zip<U, V>(
 | |
|       other1: Collection<unknown, U>,
 | |
|       other2: Collection<unknown, V>
 | |
|     ): OrderedSet<[T, U, V]>;
 | |
|     zip(
 | |
|       ...collections: Array<Collection<unknown, unknown>>
 | |
|     ): OrderedSet<unknown>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a OrderedSet of the same type "zipped" with the provided
 | |
|      * collections.
 | |
|      *
 | |
|      * Unlike `zip`, `zipAll` continues zipping until the longest collection is
 | |
|      * exhausted. Missing values from shorter collections are filled with `undefined`.
 | |
|      *
 | |
|      * ```js
 | |
|      * const a = OrderedSet([ 1, 2 ]);
 | |
|      * const b = OrderedSet([ 3, 4, 5 ]);
 | |
|      * const c = a.zipAll(b); // OrderedSet [ [ 1, 3 ], [ 2, 4 ], [ undefined, 5 ] ]
 | |
|      * ```
 | |
|      *
 | |
|      * Note: Since zipAll will return a collection as large as the largest
 | |
|      * input, some results may contain undefined values. TypeScript cannot
 | |
|      * account for these without cases (as of v2.5).
 | |
|      */
 | |
|     zipAll<U>(other: Collection<unknown, U>): OrderedSet<[T, U]>;
 | |
|     zipAll<U, V>(
 | |
|       other1: Collection<unknown, U>,
 | |
|       other2: Collection<unknown, V>
 | |
|     ): OrderedSet<[T, U, V]>;
 | |
|     zipAll(
 | |
|       ...collections: Array<Collection<unknown, unknown>>
 | |
|     ): OrderedSet<unknown>;
 | |
| 
 | |
|     /**
 | |
|      * Returns an OrderedSet of the same type "zipped" with the provided
 | |
|      * collections by using a custom `zipper` function.
 | |
|      *
 | |
|      * @see Seq.Indexed.zipWith
 | |
|      */
 | |
|     zipWith<U, Z>(
 | |
|       zipper: (value: T, otherValue: U) => Z,
 | |
|       otherCollection: Collection<unknown, U>
 | |
|     ): OrderedSet<Z>;
 | |
|     zipWith<U, V, Z>(
 | |
|       zipper: (value: T, otherValue: U, thirdValue: V) => Z,
 | |
|       otherCollection: Collection<unknown, U>,
 | |
|       thirdCollection: Collection<unknown, V>
 | |
|     ): OrderedSet<Z>;
 | |
|     zipWith<Z>(
 | |
|       zipper: (...values: Array<unknown>) => Z,
 | |
|       ...collections: Array<Collection<unknown, unknown>>
 | |
|     ): OrderedSet<Z>;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Stacks are indexed collections which support very efficient O(1) addition
 | |
|    * and removal from the front using `unshift(v)` and `shift()`.
 | |
|    *
 | |
|    * For familiarity, Stack also provides `push(v)`, `pop()`, and `peek()`, but
 | |
|    * be aware that they also operate on the front of the list, unlike List or
 | |
|    * a JavaScript Array.
 | |
|    *
 | |
|    * Note: `reverse()` or any inherent reverse traversal (`reduceRight`,
 | |
|    * `lastIndexOf`, etc.) is not efficient with a Stack.
 | |
|    *
 | |
|    * Stack is implemented with a Single-Linked List.
 | |
|    */
 | |
|   namespace Stack {
 | |
|     /**
 | |
|      * True if the provided value is a Stack
 | |
|      */
 | |
|     function isStack(maybeStack: unknown): maybeStack is Stack<unknown>;
 | |
| 
 | |
|     /**
 | |
|      * Creates a new Stack containing `values`.
 | |
|      */
 | |
|     function of<T>(...values: Array<T>): Stack<T>;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Create a new immutable Stack containing the values of the provided
 | |
|    * collection-like.
 | |
|    *
 | |
|    * The iteration order of the provided collection is preserved in the
 | |
|    * resulting `Stack`.
 | |
|    *
 | |
|    * Note: `Stack` is a factory function and not a class, and does not use the
 | |
|    * `new` keyword during construction.
 | |
|    */
 | |
|   function Stack<T>(collection?: Iterable<T> | ArrayLike<T>): Stack<T>;
 | |
| 
 | |
|   interface Stack<T> extends Collection.Indexed<T> {
 | |
|     /**
 | |
|      * The number of items in this Stack.
 | |
|      */
 | |
|     readonly size: number;
 | |
| 
 | |
|     // Reading values
 | |
| 
 | |
|     /**
 | |
|      * Alias for `Stack.first()`.
 | |
|      */
 | |
|     peek(): T | undefined;
 | |
| 
 | |
|     // Persistent changes
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Stack with 0 size and no values.
 | |
|      *
 | |
|      * Note: `clear` can be used in `withMutations`.
 | |
|      */
 | |
|     clear(): Stack<T>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Stack with the provided `values` prepended, shifting other
 | |
|      * values ahead to higher indices.
 | |
|      *
 | |
|      * This is very efficient for Stack.
 | |
|      *
 | |
|      * Note: `unshift` can be used in `withMutations`.
 | |
|      */
 | |
|     unshift(...values: Array<T>): Stack<T>;
 | |
| 
 | |
|     /**
 | |
|      * Like `Stack#unshift`, but accepts a collection rather than varargs.
 | |
|      *
 | |
|      * Note: `unshiftAll` can be used in `withMutations`.
 | |
|      */
 | |
|     unshiftAll(iter: Iterable<T>): Stack<T>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Stack with a size ones less than this Stack, excluding
 | |
|      * the first item in this Stack, shifting all other values to a lower index.
 | |
|      *
 | |
|      * Note: this differs from `Array#shift` because it returns a new
 | |
|      * Stack rather than the removed value. Use `first()` or `peek()` to get the
 | |
|      * first value in this Stack.
 | |
|      *
 | |
|      * Note: `shift` can be used in `withMutations`.
 | |
|      */
 | |
|     shift(): Stack<T>;
 | |
| 
 | |
|     /**
 | |
|      * Alias for `Stack#unshift` and is not equivalent to `List#push`.
 | |
|      */
 | |
|     push(...values: Array<T>): Stack<T>;
 | |
| 
 | |
|     /**
 | |
|      * Alias for `Stack#unshiftAll`.
 | |
|      */
 | |
|     pushAll(iter: Iterable<T>): Stack<T>;
 | |
| 
 | |
|     /**
 | |
|      * Alias for `Stack#shift` and is not equivalent to `List#pop`.
 | |
|      */
 | |
|     pop(): Stack<T>;
 | |
| 
 | |
|     // Transient changes
 | |
| 
 | |
|     /**
 | |
|      * Note: Not all methods can be used on a mutable collection or within
 | |
|      * `withMutations`! Check the documentation for each method to see if it
 | |
|      * mentions being safe to use in `withMutations`.
 | |
|      *
 | |
|      * @see `Map#withMutations`
 | |
|      */
 | |
|     withMutations(mutator: (mutable: this) => unknown): this;
 | |
| 
 | |
|     /**
 | |
|      * Note: Not all methods can be used on a mutable collection or within
 | |
|      * `withMutations`! Check the documentation for each method to see if it
 | |
|      * mentions being safe to use in `withMutations`.
 | |
|      *
 | |
|      * @see `Map#asMutable`
 | |
|      */
 | |
|     asMutable(): this;
 | |
| 
 | |
|     /**
 | |
|      * @see `Map#wasAltered`
 | |
|      */
 | |
|     wasAltered(): boolean;
 | |
| 
 | |
|     /**
 | |
|      * @see `Map#asImmutable`
 | |
|      */
 | |
|     asImmutable(): this;
 | |
| 
 | |
|     // Sequence algorithms
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Stack with other collections concatenated to this one.
 | |
|      */
 | |
|     concat<C>(...valuesOrCollections: Array<Iterable<C> | C>): Stack<T | C>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Stack with values passed through a
 | |
|      * `mapper` function.
 | |
|      *
 | |
|      *     Stack([ 1, 2 ]).map(x => 10 * x)
 | |
|      *     // Stack [ 10, 20 ]
 | |
|      *
 | |
|      * Note: `map()` always returns a new instance, even if it produced the same
 | |
|      * value at every step.
 | |
|      */
 | |
|     map<M>(
 | |
|       mapper: (value: T, key: number, iter: this) => M,
 | |
|       context?: unknown
 | |
|     ): Stack<M>;
 | |
| 
 | |
|     /**
 | |
|      * Flat-maps the Stack, returning a new Stack.
 | |
|      *
 | |
|      * Similar to `stack.map(...).flatten(true)`.
 | |
|      */
 | |
|     flatMap<M>(
 | |
|       mapper: (value: T, key: number, iter: this) => Iterable<M>,
 | |
|       context?: unknown
 | |
|     ): Stack<M>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Set with only the values for which the `predicate`
 | |
|      * function returns true.
 | |
|      *
 | |
|      * Note: `filter()` always returns a new instance, even if it results in
 | |
|      * not filtering out any values.
 | |
|      */
 | |
|     filter<F extends T>(
 | |
|       predicate: (value: T, index: number, iter: this) => value is F,
 | |
|       context?: unknown
 | |
|     ): Set<F>;
 | |
|     filter(
 | |
|       predicate: (value: T, index: number, iter: this) => unknown,
 | |
|       context?: unknown
 | |
|     ): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a Stack "zipped" with the provided collections.
 | |
|      *
 | |
|      * Like `zipWith`, but using the default `zipper`: creating an `Array`.
 | |
|      *
 | |
|      * ```js
 | |
|      * const a = Stack([ 1, 2, 3 ]);
 | |
|      * const b = Stack([ 4, 5, 6 ]);
 | |
|      * const c = a.zip(b); // Stack [ [ 1, 4 ], [ 2, 5 ], [ 3, 6 ] ]
 | |
|      * ```
 | |
|      */
 | |
|     zip<U>(other: Collection<unknown, U>): Stack<[T, U]>;
 | |
|     zip<U, V>(
 | |
|       other: Collection<unknown, U>,
 | |
|       other2: Collection<unknown, V>
 | |
|     ): Stack<[T, U, V]>;
 | |
|     zip(...collections: Array<Collection<unknown, unknown>>): Stack<unknown>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a Stack "zipped" with the provided collections.
 | |
|      *
 | |
|      * Unlike `zip`, `zipAll` continues zipping until the longest collection is
 | |
|      * exhausted. Missing values from shorter collections are filled with `undefined`.
 | |
|      *
 | |
|      * ```js
 | |
|      * const a = Stack([ 1, 2 ]);
 | |
|      * const b = Stack([ 3, 4, 5 ]);
 | |
|      * const c = a.zipAll(b); // Stack [ [ 1, 3 ], [ 2, 4 ], [ undefined, 5 ] ]
 | |
|      * ```
 | |
|      *
 | |
|      * Note: Since zipAll will return a collection as large as the largest
 | |
|      * input, some results may contain undefined values. TypeScript cannot
 | |
|      * account for these without cases (as of v2.5).
 | |
|      */
 | |
|     zipAll<U>(other: Collection<unknown, U>): Stack<[T, U]>;
 | |
|     zipAll<U, V>(
 | |
|       other: Collection<unknown, U>,
 | |
|       other2: Collection<unknown, V>
 | |
|     ): Stack<[T, U, V]>;
 | |
|     zipAll(...collections: Array<Collection<unknown, unknown>>): Stack<unknown>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a Stack "zipped" with the provided collections by using a
 | |
|      * custom `zipper` function.
 | |
|      *
 | |
|      * ```js
 | |
|      * const a = Stack([ 1, 2, 3 ]);
 | |
|      * const b = Stack([ 4, 5, 6 ]);
 | |
|      * const c = a.zipWith((a, b) => a + b, b);
 | |
|      * // Stack [ 5, 7, 9 ]
 | |
|      * ```
 | |
|      */
 | |
|     zipWith<U, Z>(
 | |
|       zipper: (value: T, otherValue: U) => Z,
 | |
|       otherCollection: Collection<unknown, U>
 | |
|     ): Stack<Z>;
 | |
|     zipWith<U, V, Z>(
 | |
|       zipper: (value: T, otherValue: U, thirdValue: V) => Z,
 | |
|       otherCollection: Collection<unknown, U>,
 | |
|       thirdCollection: Collection<unknown, V>
 | |
|     ): Stack<Z>;
 | |
|     zipWith<Z>(
 | |
|       zipper: (...values: Array<unknown>) => Z,
 | |
|       ...collections: Array<Collection<unknown, unknown>>
 | |
|     ): Stack<Z>;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Returns a Seq.Indexed of numbers from `start` (inclusive) to `end`
 | |
|    * (exclusive), by `step`, where `start` defaults to 0, `step` to 1, and `end` to
 | |
|    * infinity. When `start` is equal to `end`, returns empty range.
 | |
|    *
 | |
|    * Note: `Range` is a factory function and not a class, and does not use the
 | |
|    * `new` keyword during construction.
 | |
|    *
 | |
|    * ```js
 | |
|    * const { Range } = require('immutable')
 | |
|    * Range() // [ 0, 1, 2, 3, ... ]
 | |
|    * Range(10) // [ 10, 11, 12, 13, ... ]
 | |
|    * Range(10, 15) // [ 10, 11, 12, 13, 14 ]
 | |
|    * Range(10, 30, 5) // [ 10, 15, 20, 25 ]
 | |
|    * Range(30, 10, 5) // [ 30, 25, 20, 15 ]
 | |
|    * Range(30, 30, 5) // []
 | |
|    * ```
 | |
|    */
 | |
|   function Range(
 | |
|     start?: number,
 | |
|     end?: number,
 | |
|     step?: number
 | |
|   ): Seq.Indexed<number>;
 | |
| 
 | |
|   /**
 | |
|    * Returns a Seq.Indexed of `value` repeated `times` times. When `times` is
 | |
|    * not defined, returns an infinite `Seq` of `value`.
 | |
|    *
 | |
|    * Note: `Repeat` is a factory function and not a class, and does not use the
 | |
|    * `new` keyword during construction.
 | |
|    *
 | |
|    * ```js
 | |
|    * const { Repeat } = require('immutable')
 | |
|    * Repeat('foo') // [ 'foo', 'foo', 'foo', ... ]
 | |
|    * Repeat('bar', 4) // [ 'bar', 'bar', 'bar', 'bar' ]
 | |
|    * ```
 | |
|    */
 | |
|   function Repeat<T>(value: T, times?: number): Seq.Indexed<T>;
 | |
| 
 | |
|   /**
 | |
|    * A record is similar to a JS object, but enforces a specific set of allowed
 | |
|    * string keys, and has default values.
 | |
|    *
 | |
|    * The `Record()` function produces new Record Factories, which when called
 | |
|    * create Record instances.
 | |
|    *
 | |
|    * ```js
 | |
|    * const { Record } = require('immutable')
 | |
|    * const ABRecord = Record({ a: 1, b: 2 })
 | |
|    * const myRecord = ABRecord({ b: 3 })
 | |
|    * ```
 | |
|    *
 | |
|    * Records always have a value for the keys they define. `remove`ing a key
 | |
|    * from a record simply resets it to the default value for that key.
 | |
|    *
 | |
|    * ```js
 | |
|    * myRecord.get('a') // 1
 | |
|    * myRecord.get('b') // 3
 | |
|    * const myRecordWithoutB = myRecord.remove('b')
 | |
|    * myRecordWithoutB.get('b') // 2
 | |
|    * ```
 | |
|    *
 | |
|    * Values provided to the constructor not found in the Record type will
 | |
|    * be ignored. For example, in this case, ABRecord is provided a key "x" even
 | |
|    * though only "a" and "b" have been defined. The value for "x" will be
 | |
|    * ignored for this record.
 | |
|    *
 | |
|    * ```js
 | |
|    * const myRecord = ABRecord({ b: 3, x: 10 })
 | |
|    * myRecord.get('x') // undefined
 | |
|    * ```
 | |
|    *
 | |
|    * Because Records have a known set of string keys, property get access works
 | |
|    * as expected, however property sets will throw an Error.
 | |
|    *
 | |
|    * Note: IE8 does not support property access. Only use `get()` when
 | |
|    * supporting IE8.
 | |
|    *
 | |
|    * ```js
 | |
|    * myRecord.b // 3
 | |
|    * myRecord.b = 5 // throws Error
 | |
|    * ```
 | |
|    *
 | |
|    * Record Types can be extended as well, allowing for custom methods on your
 | |
|    * Record. This is not a common pattern in functional environments, but is in
 | |
|    * many JS programs.
 | |
|    *
 | |
|    * However Record Types are more restricted than typical JavaScript classes.
 | |
|    * They do not use a class constructor, which also means they cannot use
 | |
|    * class properties (since those are technically part of a constructor).
 | |
|    *
 | |
|    * While Record Types can be syntactically created with the JavaScript `class`
 | |
|    * form, the resulting Record function is actually a factory function, not a
 | |
|    * class constructor. Even though Record Types are not classes, JavaScript
 | |
|    * currently requires the use of `new` when creating new Record instances if
 | |
|    * they are defined as a `class`.
 | |
|    *
 | |
|    * ```
 | |
|    * class ABRecord extends Record({ a: 1, b: 2 }) {
 | |
|    *   getAB() {
 | |
|    *     return this.a + this.b;
 | |
|    *   }
 | |
|    * }
 | |
|    *
 | |
|    * var myRecord = new ABRecord({b: 3})
 | |
|    * myRecord.getAB() // 4
 | |
|    * ```
 | |
|    *
 | |
|    *
 | |
|    * **Flow Typing Records:**
 | |
|    *
 | |
|    * Immutable.js exports two Flow types designed to make it easier to use
 | |
|    * Records with flow typed code, `RecordOf<TProps>` and `RecordFactory<TProps>`.
 | |
|    *
 | |
|    * When defining a new kind of Record factory function, use a flow type that
 | |
|    * describes the values the record contains along with `RecordFactory<TProps>`.
 | |
|    * To type instances of the Record (which the factory function returns),
 | |
|    * use `RecordOf<TProps>`.
 | |
|    *
 | |
|    * Typically, new Record definitions will export both the Record factory
 | |
|    * function as well as the Record instance type for use in other code.
 | |
|    *
 | |
|    * ```js
 | |
|    * import type { RecordFactory, RecordOf } from 'immutable';
 | |
|    *
 | |
|    * // Use RecordFactory<TProps> for defining new Record factory functions.
 | |
|    * type Point3DProps = { x: number, y: number, z: number };
 | |
|    * const defaultValues: Point3DProps = { x: 0, y: 0, z: 0 };
 | |
|    * const makePoint3D: RecordFactory<Point3DProps> = Record(defaultValues);
 | |
|    * export makePoint3D;
 | |
|    *
 | |
|    * // Use RecordOf<T> for defining new instances of that Record.
 | |
|    * export type Point3D = RecordOf<Point3DProps>;
 | |
|    * const some3DPoint: Point3D = makePoint3D({ x: 10, y: 20, z: 30 });
 | |
|    * ```
 | |
|    *
 | |
|    * **Flow Typing Record Subclasses:**
 | |
|    *
 | |
|    * Records can be subclassed as a means to add additional methods to Record
 | |
|    * instances. This is generally discouraged in favor of a more functional API,
 | |
|    * since Subclasses have some minor overhead. However the ability to create
 | |
|    * a rich API on Record types can be quite valuable.
 | |
|    *
 | |
|    * When using Flow to type Subclasses, do not use `RecordFactory<TProps>`,
 | |
|    * instead apply the props type when subclassing:
 | |
|    *
 | |
|    * ```js
 | |
|    * type PersonProps = {name: string, age: number};
 | |
|    * const defaultValues: PersonProps = {name: 'Aristotle', age: 2400};
 | |
|    * const PersonRecord = Record(defaultValues);
 | |
|    * class Person extends PersonRecord<PersonProps> {
 | |
|    *   getName(): string {
 | |
|    *     return this.get('name')
 | |
|    *   }
 | |
|    *
 | |
|    *   setName(name: string): this {
 | |
|    *     return this.set('name', name);
 | |
|    *   }
 | |
|    * }
 | |
|    * ```
 | |
|    *
 | |
|    * **Choosing Records vs plain JavaScript objects**
 | |
|    *
 | |
|    * Records offer a persistently immutable alternative to plain JavaScript
 | |
|    * objects, however they're not required to be used within Immutable.js
 | |
|    * collections. In fact, the deep-access and deep-updating functions
 | |
|    * like `getIn()` and `setIn()` work with plain JavaScript Objects as well.
 | |
|    *
 | |
|    * Deciding to use Records or Objects in your application should be informed
 | |
|    * by the tradeoffs and relative benefits of each:
 | |
|    *
 | |
|    * - *Runtime immutability*: plain JS objects may be carefully treated as
 | |
|    *   immutable, however Record instances will *throw* if attempted to be
 | |
|    *   mutated directly. Records provide this additional guarantee, however at
 | |
|    *   some marginal runtime cost. While JS objects are mutable by nature, the
 | |
|    *   use of type-checking tools like [Flow](https://medium.com/@gcanti/immutability-with-flow-faa050a1aef4)
 | |
|    *   can help gain confidence in code written to favor immutability.
 | |
|    *
 | |
|    * - *Value equality*: Records use value equality when compared with `is()`
 | |
|    *   or `record.equals()`. That is, two Records with the same keys and values
 | |
|    *   are equal. Plain objects use *reference equality*. Two objects with the
 | |
|    *   same keys and values are not equal since they are different objects.
 | |
|    *   This is important to consider when using objects as keys in a `Map` or
 | |
|    *   values in a `Set`, which use equality when retrieving values.
 | |
|    *
 | |
|    * - *API methods*: Records have a full featured API, with methods like
 | |
|    *   `.getIn()`, and `.equals()`. These can make working with these values
 | |
|    *   easier, but comes at the cost of not allowing keys with those names.
 | |
|    *
 | |
|    * - *Default values*: Records provide default values for every key, which
 | |
|    *   can be useful when constructing Records with often unchanging values.
 | |
|    *   However default values can make using Flow and TypeScript more laborious.
 | |
|    *
 | |
|    * - *Serialization*: Records use a custom internal representation to
 | |
|    *   efficiently store and update their values. Converting to and from this
 | |
|    *   form isn't free. If converting Records to plain objects is common,
 | |
|    *   consider sticking with plain objects to begin with.
 | |
|    */
 | |
|   namespace Record {
 | |
|     /**
 | |
|      * True if `maybeRecord` is an instance of a Record.
 | |
|      */
 | |
|     function isRecord(maybeRecord: unknown): maybeRecord is Record<{}>;
 | |
| 
 | |
|     /**
 | |
|      * Records allow passing a second parameter to supply a descriptive name
 | |
|      * that appears when converting a Record to a string or in any error
 | |
|      * messages. A descriptive name for any record can be accessed by using this
 | |
|      * method. If one was not provided, the string "Record" is returned.
 | |
|      *
 | |
|      * ```js
 | |
|      * const { Record } = require('immutable')
 | |
|      * const Person = Record({
 | |
|      *   name: null
 | |
|      * }, 'Person')
 | |
|      *
 | |
|      * var me = Person({ name: 'My Name' })
 | |
|      * me.toString() // "Person { "name": "My Name" }"
 | |
|      * Record.getDescriptiveName(me) // "Person"
 | |
|      * ```
 | |
|      */
 | |
|     function getDescriptiveName(record: Record<any>): string;
 | |
| 
 | |
|     /**
 | |
|      * A Record.Factory is created by the `Record()` function. Record instances
 | |
|      * are created by passing it some of the accepted values for that Record
 | |
|      * type:
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { Record } = require('immutable')" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * // makePerson is a Record Factory function
 | |
|      * const makePerson = Record({ name: null, favoriteColor: 'unknown' });
 | |
|      *
 | |
|      * // alan is a Record instance
 | |
|      * const alan = makePerson({ name: 'Alan' });
 | |
|      * ```
 | |
|      *
 | |
|      * Note that Record Factories return `Record<TProps> & Readonly<TProps>`,
 | |
|      * this allows use of both the Record instance API, and direct property
 | |
|      * access on the resulting instances:
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { Record } = require('immutable');const makePerson = Record({ name: null, favoriteColor: 'unknown' });const alan = makePerson({ name: 'Alan' });" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * // Use the Record API
 | |
|      * console.log('Record API: ' + alan.get('name'))
 | |
|      *
 | |
|      * // Or direct property access (Readonly)
 | |
|      * console.log('property access: ' + alan.name)
 | |
|      * ```
 | |
|      *
 | |
|      * **Flow Typing Records:**
 | |
|      *
 | |
|      * Use the `RecordFactory<TProps>` Flow type to get high quality type checking of
 | |
|      * Records:
 | |
|      *
 | |
|      * ```js
 | |
|      * import type { RecordFactory, RecordOf } from 'immutable';
 | |
|      *
 | |
|      * // Use RecordFactory<TProps> for defining new Record factory functions.
 | |
|      * type PersonProps = { name: ?string, favoriteColor: string };
 | |
|      * const makePerson: RecordFactory<PersonProps> = Record({ name: null, favoriteColor: 'unknown' });
 | |
|      *
 | |
|      * // Use RecordOf<T> for defining new instances of that Record.
 | |
|      * type Person = RecordOf<PersonProps>;
 | |
|      * const alan: Person = makePerson({ name: 'Alan' });
 | |
|      * ```
 | |
|      */
 | |
|     namespace Factory {}
 | |
| 
 | |
|     interface Factory<TProps extends object> {
 | |
|       (values?: Partial<TProps> | Iterable<[string, unknown]>): Record<TProps> &
 | |
|         Readonly<TProps>;
 | |
|       new (
 | |
|         values?: Partial<TProps> | Iterable<[string, unknown]>
 | |
|       ): Record<TProps> & Readonly<TProps>;
 | |
| 
 | |
|       /**
 | |
|        * The name provided to `Record(values, name)` can be accessed with
 | |
|        * `displayName`.
 | |
|        */
 | |
|       displayName: string;
 | |
|     }
 | |
| 
 | |
|     function Factory<TProps extends object>(
 | |
|       values?: Partial<TProps> | Iterable<[string, unknown]>
 | |
|     ): Record<TProps> & Readonly<TProps>;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Unlike other types in Immutable.js, the `Record()` function creates a new
 | |
|    * Record Factory, which is a function that creates Record instances.
 | |
|    *
 | |
|    * See above for examples of using `Record()`.
 | |
|    *
 | |
|    * Note: `Record` is a factory function and not a class, and does not use the
 | |
|    * `new` keyword during construction.
 | |
|    */
 | |
|   function Record<TProps extends object>(
 | |
|     defaultValues: TProps,
 | |
|     name?: string
 | |
|   ): Record.Factory<TProps>;
 | |
| 
 | |
|   interface Record<TProps extends object> {
 | |
|     // Reading values
 | |
| 
 | |
|     has(key: string): key is keyof TProps & string;
 | |
| 
 | |
|     /**
 | |
|      * Returns the value associated with the provided key, which may be the
 | |
|      * default value defined when creating the Record factory function.
 | |
|      *
 | |
|      * If the requested key is not defined by this Record type, then
 | |
|      * notSetValue will be returned if provided. Note that this scenario would
 | |
|      * produce an error when using Flow or TypeScript.
 | |
|      */
 | |
|     get<K extends keyof TProps>(key: K, notSetValue?: unknown): TProps[K];
 | |
|     get<T>(key: string, notSetValue: T): T;
 | |
| 
 | |
|     // Reading deep values
 | |
| 
 | |
|     hasIn(keyPath: Iterable<unknown>): boolean;
 | |
|     getIn(keyPath: Iterable<unknown>): unknown;
 | |
| 
 | |
|     // Value equality
 | |
| 
 | |
|     equals(other: unknown): boolean;
 | |
|     hashCode(): number;
 | |
| 
 | |
|     // Persistent changes
 | |
| 
 | |
|     set<K extends keyof TProps>(key: K, value: TProps[K]): this;
 | |
|     update<K extends keyof TProps>(
 | |
|       key: K,
 | |
|       updater: (value: TProps[K]) => TProps[K]
 | |
|     ): this;
 | |
|     merge(
 | |
|       ...collections: Array<Partial<TProps> | Iterable<[string, unknown]>>
 | |
|     ): this;
 | |
|     mergeDeep(
 | |
|       ...collections: Array<Partial<TProps> | Iterable<[string, unknown]>>
 | |
|     ): this;
 | |
| 
 | |
|     mergeWith(
 | |
|       merger: (oldVal: unknown, newVal: unknown, key: keyof TProps) => unknown,
 | |
|       ...collections: Array<Partial<TProps> | Iterable<[string, unknown]>>
 | |
|     ): this;
 | |
|     mergeDeepWith(
 | |
|       merger: (oldVal: unknown, newVal: unknown, key: unknown) => unknown,
 | |
|       ...collections: Array<Partial<TProps> | Iterable<[string, unknown]>>
 | |
|     ): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new instance of this Record type with the value for the
 | |
|      * specific key set to its default value.
 | |
|      *
 | |
|      * @alias remove
 | |
|      */
 | |
|     delete<K extends keyof TProps>(key: K): this;
 | |
|     remove<K extends keyof TProps>(key: K): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new instance of this Record type with all values set
 | |
|      * to their default values.
 | |
|      */
 | |
|     clear(): this;
 | |
| 
 | |
|     // Deep persistent changes
 | |
| 
 | |
|     setIn(keyPath: Iterable<unknown>, value: unknown): this;
 | |
|     updateIn(
 | |
|       keyPath: Iterable<unknown>,
 | |
|       updater: (value: unknown) => unknown
 | |
|     ): this;
 | |
|     mergeIn(keyPath: Iterable<unknown>, ...collections: Array<unknown>): this;
 | |
|     mergeDeepIn(
 | |
|       keyPath: Iterable<unknown>,
 | |
|       ...collections: Array<unknown>
 | |
|     ): this;
 | |
| 
 | |
|     /**
 | |
|      * @alias removeIn
 | |
|      */
 | |
|     deleteIn(keyPath: Iterable<unknown>): this;
 | |
|     removeIn(keyPath: Iterable<unknown>): this;
 | |
| 
 | |
|     // Conversion to JavaScript types
 | |
| 
 | |
|     /**
 | |
|      * Deeply converts this Record to equivalent native JavaScript Object.
 | |
|      *
 | |
|      * Note: This method may not be overridden. Objects with custom
 | |
|      * serialization to plain JS may override toJSON() instead.
 | |
|      */
 | |
|     toJS(): DeepCopy<TProps>;
 | |
| 
 | |
|     /**
 | |
|      * Shallowly converts this Record to equivalent native JavaScript Object.
 | |
|      */
 | |
|     toJSON(): TProps;
 | |
| 
 | |
|     /**
 | |
|      * Shallowly converts this Record to equivalent JavaScript Object.
 | |
|      */
 | |
|     toObject(): TProps;
 | |
| 
 | |
|     // Transient changes
 | |
| 
 | |
|     /**
 | |
|      * Note: Not all methods can be used on a mutable collection or within
 | |
|      * `withMutations`! Only `set` may be used mutatively.
 | |
|      *
 | |
|      * @see `Map#withMutations`
 | |
|      */
 | |
|     withMutations(mutator: (mutable: this) => unknown): this;
 | |
| 
 | |
|     /**
 | |
|      * @see `Map#asMutable`
 | |
|      */
 | |
|     asMutable(): this;
 | |
| 
 | |
|     /**
 | |
|      * @see `Map#wasAltered`
 | |
|      */
 | |
|     wasAltered(): boolean;
 | |
| 
 | |
|     /**
 | |
|      * @see `Map#asImmutable`
 | |
|      */
 | |
|     asImmutable(): this;
 | |
| 
 | |
|     // Sequence algorithms
 | |
| 
 | |
|     toSeq(): Seq.Keyed<keyof TProps, TProps[keyof TProps]>;
 | |
| 
 | |
|     [Symbol.iterator](): IterableIterator<[keyof TProps, TProps[keyof TProps]]>;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * RecordOf<T> is used in TypeScript to define interfaces expecting an
 | |
|    * instance of record with type T.
 | |
|    *
 | |
|    * This is equivalent to an instance of a record created by a Record Factory.
 | |
|    */
 | |
|   type RecordOf<TProps extends object> = Record<TProps> & Readonly<TProps>;
 | |
| 
 | |
|   /**
 | |
|    * `Seq` describes a lazy operation, allowing them to efficiently chain
 | |
|    * use of all the higher-order collection methods (such as `map` and `filter`)
 | |
|    * by not creating intermediate collections.
 | |
|    *
 | |
|    * **Seq is immutable** — Once a Seq is created, it cannot be
 | |
|    * changed, appended to, rearranged or otherwise modified. Instead, any
 | |
|    * mutative method called on a `Seq` will return a new `Seq`.
 | |
|    *
 | |
|    * **Seq is lazy** — `Seq` does as little work as necessary to respond to any
 | |
|    * method call. Values are often created during iteration, including implicit
 | |
|    * iteration when reducing or converting to a concrete data structure such as
 | |
|    * a `List` or JavaScript `Array`.
 | |
|    *
 | |
|    * For example, the following performs no work, because the resulting
 | |
|    * `Seq`'s values are never iterated:
 | |
|    *
 | |
|    * ```js
 | |
|    * const { Seq } = require('immutable')
 | |
|    * const oddSquares = Seq([ 1, 2, 3, 4, 5, 6, 7, 8 ])
 | |
|    *   .filter(x => x % 2 !== 0)
 | |
|    *   .map(x => x * x)
 | |
|    * ```
 | |
|    *
 | |
|    * Once the `Seq` is used, it performs only the work necessary. In this
 | |
|    * example, no intermediate arrays are ever created, filter is called three
 | |
|    * times, and map is only called once:
 | |
|    *
 | |
|    * ```js
 | |
|    * oddSquares.get(1); // 9
 | |
|    * ```
 | |
|    *
 | |
|    * Any collection can be converted to a lazy Seq with `Seq()`.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { Map } = require('immutable')
 | |
|    * const map = Map({ a: 1, b: 2, c: 3 })
 | |
|    * const lazySeq = Seq(map)
 | |
|    * ```
 | |
|    *
 | |
|    * `Seq` allows for the efficient chaining of operations, allowing for the
 | |
|    * expression of logic that can otherwise be very tedious:
 | |
|    *
 | |
|    * ```js
 | |
|    * lazySeq
 | |
|    *   .flip()
 | |
|    *   .map(key => key.toUpperCase())
 | |
|    *   .flip()
 | |
|    * // Seq { A: 1, B: 1, C: 1 }
 | |
|    * ```
 | |
|    *
 | |
|    * As well as expressing logic that would otherwise seem memory or time
 | |
|    * limited, for example `Range` is a special kind of Lazy sequence.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { Range } = require('immutable')
 | |
|    * Range(1, Infinity)
 | |
|    *   .skip(1000)
 | |
|    *   .map(n => -n)
 | |
|    *   .filter(n => n % 2 === 0)
 | |
|    *   .take(2)
 | |
|    *   .reduce((r, n) => r * n, 1)
 | |
|    * // 1006008
 | |
|    * ```
 | |
|    *
 | |
|    * Seq is often used to provide a rich collection API to JavaScript Object.
 | |
|    *
 | |
|    * ```js
 | |
|    * Seq({ x: 0, y: 1, z: 2 }).map(v => v * 2).toObject();
 | |
|    * // { x: 0, y: 2, z: 4 }
 | |
|    * ```
 | |
|    */
 | |
| 
 | |
|   namespace Seq {
 | |
|     /**
 | |
|      * True if `maybeSeq` is a Seq, it is not backed by a concrete
 | |
|      * structure such as Map, List, or Set.
 | |
|      */
 | |
|     function isSeq(
 | |
|       maybeSeq: unknown
 | |
|     ): maybeSeq is
 | |
|       | Seq.Indexed<unknown>
 | |
|       | Seq.Keyed<unknown, unknown>
 | |
|       | Seq.Set<unknown>;
 | |
| 
 | |
|     /**
 | |
|      * `Seq` which represents key-value pairs.
 | |
|      */
 | |
|     namespace Keyed {}
 | |
| 
 | |
|     /**
 | |
|      * Always returns a Seq.Keyed, if input is not keyed, expects an
 | |
|      * collection of [K, V] tuples.
 | |
|      *
 | |
|      * Note: `Seq.Keyed` is a conversion function and not a class, and does not
 | |
|      * use the `new` keyword during construction.
 | |
|      */
 | |
|     function Keyed<K, V>(collection?: Iterable<[K, V]>): Seq.Keyed<K, V>;
 | |
|     function Keyed<V>(obj: { [key: string]: V }): Seq.Keyed<string, V>;
 | |
| 
 | |
|     interface Keyed<K, V> extends Seq<K, V>, Collection.Keyed<K, V> {
 | |
|       /**
 | |
|        * Deeply converts this Keyed Seq to equivalent native JavaScript Object.
 | |
|        *
 | |
|        * Converts keys to Strings.
 | |
|        */
 | |
|       toJS(): { [key in string | number | symbol]: DeepCopy<V> };
 | |
| 
 | |
|       /**
 | |
|        * Shallowly converts this Keyed Seq to equivalent native JavaScript Object.
 | |
|        *
 | |
|        * Converts keys to Strings.
 | |
|        */
 | |
|       toJSON(): { [key in string | number | symbol]: V };
 | |
| 
 | |
|       /**
 | |
|        * Shallowly converts this collection to an Array.
 | |
|        */
 | |
|       toArray(): Array<[K, V]>;
 | |
| 
 | |
|       /**
 | |
|        * Returns itself
 | |
|        */
 | |
|       toSeq(): this;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new Seq with other collections concatenated to this one.
 | |
|        *
 | |
|        * All entries will be present in the resulting Seq, even if they
 | |
|        * have the same key.
 | |
|        */
 | |
|       concat<KC, VC>(
 | |
|         ...collections: Array<Iterable<[KC, VC]>>
 | |
|       ): Seq.Keyed<K | KC, V | VC>;
 | |
|       concat<C>(
 | |
|         ...collections: Array<{ [key: string]: C }>
 | |
|       ): Seq.Keyed<K | string, V | C>;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new Seq.Keyed with values passed through a
 | |
|        * `mapper` function.
 | |
|        *
 | |
|        * ```js
 | |
|        * const { Seq } = require('immutable')
 | |
|        * Seq.Keyed({ a: 1, b: 2 }).map(x => 10 * x)
 | |
|        * // Seq { "a": 10, "b": 20 }
 | |
|        * ```
 | |
|        *
 | |
|        * Note: `map()` always returns a new instance, even if it produced the
 | |
|        * same value at every step.
 | |
|        */
 | |
|       map<M>(
 | |
|         mapper: (value: V, key: K, iter: this) => M,
 | |
|         context?: unknown
 | |
|       ): Seq.Keyed<K, M>;
 | |
| 
 | |
|       /**
 | |
|        * @see Collection.Keyed.mapKeys
 | |
|        */
 | |
|       mapKeys<M>(
 | |
|         mapper: (key: K, value: V, iter: this) => M,
 | |
|         context?: unknown
 | |
|       ): Seq.Keyed<M, V>;
 | |
| 
 | |
|       /**
 | |
|        * @see Collection.Keyed.mapEntries
 | |
|        */
 | |
|       mapEntries<KM, VM>(
 | |
|         mapper: (
 | |
|           entry: [K, V],
 | |
|           index: number,
 | |
|           iter: this
 | |
|         ) => [KM, VM] | undefined,
 | |
|         context?: unknown
 | |
|       ): Seq.Keyed<KM, VM>;
 | |
| 
 | |
|       /**
 | |
|        * Flat-maps the Seq, returning a Seq of the same type.
 | |
|        *
 | |
|        * Similar to `seq.map(...).flatten(true)`.
 | |
|        */
 | |
|       flatMap<KM, VM>(
 | |
|         mapper: (value: V, key: K, iter: this) => Iterable<[KM, VM]>,
 | |
|         context?: unknown
 | |
|       ): Seq.Keyed<KM, VM>;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new Seq with only the entries for which the `predicate`
 | |
|        * function returns true.
 | |
|        *
 | |
|        * Note: `filter()` always returns a new instance, even if it results in
 | |
|        * not filtering out any values.
 | |
|        */
 | |
|       filter<F extends V>(
 | |
|         predicate: (value: V, key: K, iter: this) => value is F,
 | |
|         context?: unknown
 | |
|       ): Seq.Keyed<K, F>;
 | |
|       filter(
 | |
|         predicate: (value: V, key: K, iter: this) => unknown,
 | |
|         context?: unknown
 | |
|       ): this;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new keyed Seq with the values for which the `predicate`
 | |
|        * function returns false and another for which is returns true.
 | |
|        */
 | |
|       partition<F extends V, C>(
 | |
|         predicate: (this: C, value: V, key: K, iter: this) => value is F,
 | |
|         context?: C
 | |
|       ): [Seq.Keyed<K, V>, Seq.Keyed<K, F>];
 | |
|       partition<C>(
 | |
|         predicate: (this: C, value: V, key: K, iter: this) => unknown,
 | |
|         context?: C
 | |
|       ): [this, this];
 | |
| 
 | |
|       /**
 | |
|        * @see Collection.Keyed.flip
 | |
|        */
 | |
|       flip(): Seq.Keyed<V, K>;
 | |
| 
 | |
|       [Symbol.iterator](): IterableIterator<[K, V]>;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * `Seq` which represents an ordered indexed list of values.
 | |
|      */
 | |
|     namespace Indexed {
 | |
|       /**
 | |
|        * Provides an Seq.Indexed of the values provided.
 | |
|        */
 | |
|       function of<T>(...values: Array<T>): Seq.Indexed<T>;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Always returns Seq.Indexed, discarding associated keys and
 | |
|      * supplying incrementing indices.
 | |
|      *
 | |
|      * Note: `Seq.Indexed` is a conversion function and not a class, and does
 | |
|      * not use the `new` keyword during construction.
 | |
|      */
 | |
|     function Indexed<T>(
 | |
|       collection?: Iterable<T> | ArrayLike<T>
 | |
|     ): Seq.Indexed<T>;
 | |
| 
 | |
|     interface Indexed<T> extends Seq<number, T>, Collection.Indexed<T> {
 | |
|       /**
 | |
|        * Deeply converts this Indexed Seq to equivalent native JavaScript Array.
 | |
|        */
 | |
|       toJS(): Array<DeepCopy<T>>;
 | |
| 
 | |
|       /**
 | |
|        * Shallowly converts this Indexed Seq to equivalent native JavaScript Array.
 | |
|        */
 | |
|       toJSON(): Array<T>;
 | |
| 
 | |
|       /**
 | |
|        * Shallowly converts this collection to an Array.
 | |
|        */
 | |
|       toArray(): Array<T>;
 | |
| 
 | |
|       /**
 | |
|        * Returns itself
 | |
|        */
 | |
|       toSeq(): this;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new Seq with other collections concatenated to this one.
 | |
|        */
 | |
|       concat<C>(
 | |
|         ...valuesOrCollections: Array<Iterable<C> | C>
 | |
|       ): Seq.Indexed<T | C>;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new Seq.Indexed with values passed through a
 | |
|        * `mapper` function.
 | |
|        *
 | |
|        * ```js
 | |
|        * const { Seq } = require('immutable')
 | |
|        * Seq.Indexed([ 1, 2 ]).map(x => 10 * x)
 | |
|        * // Seq [ 10, 20 ]
 | |
|        * ```
 | |
|        *
 | |
|        * Note: `map()` always returns a new instance, even if it produced the
 | |
|        * same value at every step.
 | |
|        */
 | |
|       map<M>(
 | |
|         mapper: (value: T, key: number, iter: this) => M,
 | |
|         context?: unknown
 | |
|       ): Seq.Indexed<M>;
 | |
| 
 | |
|       /**
 | |
|        * Flat-maps the Seq, returning a a Seq of the same type.
 | |
|        *
 | |
|        * Similar to `seq.map(...).flatten(true)`.
 | |
|        */
 | |
|       flatMap<M>(
 | |
|         mapper: (value: T, key: number, iter: this) => Iterable<M>,
 | |
|         context?: unknown
 | |
|       ): Seq.Indexed<M>;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new Seq with only the values for which the `predicate`
 | |
|        * function returns true.
 | |
|        *
 | |
|        * Note: `filter()` always returns a new instance, even if it results in
 | |
|        * not filtering out any values.
 | |
|        */
 | |
|       filter<F extends T>(
 | |
|         predicate: (value: T, index: number, iter: this) => value is F,
 | |
|         context?: unknown
 | |
|       ): Seq.Indexed<F>;
 | |
|       filter(
 | |
|         predicate: (value: T, index: number, iter: this) => unknown,
 | |
|         context?: unknown
 | |
|       ): this;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new indexed Seq with the values for which the `predicate`
 | |
|        * function returns false and another for which is returns true.
 | |
|        */
 | |
|       partition<F extends T, C>(
 | |
|         predicate: (this: C, value: T, index: number, iter: this) => value is F,
 | |
|         context?: C
 | |
|       ): [Seq.Indexed<T>, Seq.Indexed<F>];
 | |
|       partition<C>(
 | |
|         predicate: (this: C, value: T, index: number, iter: this) => unknown,
 | |
|         context?: C
 | |
|       ): [this, this];
 | |
| 
 | |
|       /**
 | |
|        * Returns a Seq "zipped" with the provided collections.
 | |
|        *
 | |
|        * Like `zipWith`, but using the default `zipper`: creating an `Array`.
 | |
|        *
 | |
|        * ```js
 | |
|        * const a = Seq([ 1, 2, 3 ]);
 | |
|        * const b = Seq([ 4, 5, 6 ]);
 | |
|        * const c = a.zip(b); // Seq [ [ 1, 4 ], [ 2, 5 ], [ 3, 6 ] ]
 | |
|        * ```
 | |
|        */
 | |
|       zip<U>(other: Collection<unknown, U>): Seq.Indexed<[T, U]>;
 | |
|       zip<U, V>(
 | |
|         other: Collection<unknown, U>,
 | |
|         other2: Collection<unknown, V>
 | |
|       ): Seq.Indexed<[T, U, V]>;
 | |
|       zip(
 | |
|         ...collections: Array<Collection<unknown, unknown>>
 | |
|       ): Seq.Indexed<unknown>;
 | |
| 
 | |
|       /**
 | |
|        * Returns a Seq "zipped" with the provided collections.
 | |
|        *
 | |
|        * Unlike `zip`, `zipAll` continues zipping until the longest collection is
 | |
|        * exhausted. Missing values from shorter collections are filled with `undefined`.
 | |
|        *
 | |
|        * ```js
 | |
|        * const a = Seq([ 1, 2 ]);
 | |
|        * const b = Seq([ 3, 4, 5 ]);
 | |
|        * const c = a.zipAll(b); // Seq [ [ 1, 3 ], [ 2, 4 ], [ undefined, 5 ] ]
 | |
|        * ```
 | |
|        */
 | |
|       zipAll<U>(other: Collection<unknown, U>): Seq.Indexed<[T, U]>;
 | |
|       zipAll<U, V>(
 | |
|         other: Collection<unknown, U>,
 | |
|         other2: Collection<unknown, V>
 | |
|       ): Seq.Indexed<[T, U, V]>;
 | |
|       zipAll(
 | |
|         ...collections: Array<Collection<unknown, unknown>>
 | |
|       ): Seq.Indexed<unknown>;
 | |
| 
 | |
|       /**
 | |
|        * Returns a Seq "zipped" with the provided collections by using a
 | |
|        * custom `zipper` function.
 | |
|        *
 | |
|        * ```js
 | |
|        * const a = Seq([ 1, 2, 3 ]);
 | |
|        * const b = Seq([ 4, 5, 6 ]);
 | |
|        * const c = a.zipWith((a, b) => a + b, b);
 | |
|        * // Seq [ 5, 7, 9 ]
 | |
|        * ```
 | |
|        */
 | |
|       zipWith<U, Z>(
 | |
|         zipper: (value: T, otherValue: U) => Z,
 | |
|         otherCollection: Collection<unknown, U>
 | |
|       ): Seq.Indexed<Z>;
 | |
|       zipWith<U, V, Z>(
 | |
|         zipper: (value: T, otherValue: U, thirdValue: V) => Z,
 | |
|         otherCollection: Collection<unknown, U>,
 | |
|         thirdCollection: Collection<unknown, V>
 | |
|       ): Seq.Indexed<Z>;
 | |
|       zipWith<Z>(
 | |
|         zipper: (...values: Array<unknown>) => Z,
 | |
|         ...collections: Array<Collection<unknown, unknown>>
 | |
|       ): Seq.Indexed<Z>;
 | |
| 
 | |
|       [Symbol.iterator](): IterableIterator<T>;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * `Seq` which represents a set of values.
 | |
|      *
 | |
|      * Because `Seq` are often lazy, `Seq.Set` does not provide the same guarantee
 | |
|      * of value uniqueness as the concrete `Set`.
 | |
|      */
 | |
|     namespace Set {
 | |
|       /**
 | |
|        * Returns a Seq.Set of the provided values
 | |
|        */
 | |
|       function of<T>(...values: Array<T>): Seq.Set<T>;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Always returns a Seq.Set, discarding associated indices or keys.
 | |
|      *
 | |
|      * Note: `Seq.Set` is a conversion function and not a class, and does not
 | |
|      * use the `new` keyword during construction.
 | |
|      */
 | |
|     function Set<T>(collection?: Iterable<T> | ArrayLike<T>): Seq.Set<T>;
 | |
| 
 | |
|     interface Set<T> extends Seq<T, T>, Collection.Set<T> {
 | |
|       /**
 | |
|        * Deeply converts this Set Seq to equivalent native JavaScript Array.
 | |
|        */
 | |
|       toJS(): Array<DeepCopy<T>>;
 | |
| 
 | |
|       /**
 | |
|        * Shallowly converts this Set Seq to equivalent native JavaScript Array.
 | |
|        */
 | |
|       toJSON(): Array<T>;
 | |
| 
 | |
|       /**
 | |
|        * Shallowly converts this collection to an Array.
 | |
|        */
 | |
|       toArray(): Array<T>;
 | |
| 
 | |
|       /**
 | |
|        * Returns itself
 | |
|        */
 | |
|       toSeq(): this;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new Seq with other collections concatenated to this one.
 | |
|        *
 | |
|        * All entries will be present in the resulting Seq, even if they
 | |
|        * are duplicates.
 | |
|        */
 | |
|       concat<U>(...collections: Array<Iterable<U>>): Seq.Set<T | U>;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new Seq.Set with values passed through a
 | |
|        * `mapper` function.
 | |
|        *
 | |
|        * ```js
 | |
|        * Seq.Set([ 1, 2 ]).map(x => 10 * x)
 | |
|        * // Seq { 10, 20 }
 | |
|        * ```
 | |
|        *
 | |
|        * Note: `map()` always returns a new instance, even if it produced the
 | |
|        * same value at every step.
 | |
|        */
 | |
|       map<M>(
 | |
|         mapper: (value: T, key: T, iter: this) => M,
 | |
|         context?: unknown
 | |
|       ): Seq.Set<M>;
 | |
| 
 | |
|       /**
 | |
|        * Flat-maps the Seq, returning a Seq of the same type.
 | |
|        *
 | |
|        * Similar to `seq.map(...).flatten(true)`.
 | |
|        */
 | |
|       flatMap<M>(
 | |
|         mapper: (value: T, key: T, iter: this) => Iterable<M>,
 | |
|         context?: unknown
 | |
|       ): Seq.Set<M>;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new Seq with only the values for which the `predicate`
 | |
|        * function returns true.
 | |
|        *
 | |
|        * Note: `filter()` always returns a new instance, even if it results in
 | |
|        * not filtering out any values.
 | |
|        */
 | |
|       filter<F extends T>(
 | |
|         predicate: (value: T, key: T, iter: this) => value is F,
 | |
|         context?: unknown
 | |
|       ): Seq.Set<F>;
 | |
|       filter(
 | |
|         predicate: (value: T, key: T, iter: this) => unknown,
 | |
|         context?: unknown
 | |
|       ): this;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new set Seq with the values for which the `predicate`
 | |
|        * function returns false and another for which is returns true.
 | |
|        */
 | |
|       partition<F extends T, C>(
 | |
|         predicate: (this: C, value: T, key: T, iter: this) => value is F,
 | |
|         context?: C
 | |
|       ): [Seq.Set<T>, Seq.Set<F>];
 | |
|       partition<C>(
 | |
|         predicate: (this: C, value: T, key: T, iter: this) => unknown,
 | |
|         context?: C
 | |
|       ): [this, this];
 | |
| 
 | |
|       [Symbol.iterator](): IterableIterator<T>;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Creates a Seq.
 | |
|    *
 | |
|    * Returns a particular kind of `Seq` based on the input.
 | |
|    *
 | |
|    *   * If a `Seq`, that same `Seq`.
 | |
|    *   * If an `Collection`, a `Seq` of the same kind (Keyed, Indexed, or Set).
 | |
|    *   * If an Array-like, an `Seq.Indexed`.
 | |
|    *   * If an Iterable Object, an `Seq.Indexed`.
 | |
|    *   * If an Object, a `Seq.Keyed`.
 | |
|    *
 | |
|    * Note: An Iterator itself will be treated as an object, becoming a `Seq.Keyed`,
 | |
|    * which is usually not what you want. You should turn your Iterator Object into
 | |
|    * an iterable object by defining a Symbol.iterator (or @@iterator) method which
 | |
|    * returns `this`.
 | |
|    *
 | |
|    * Note: `Seq` is a conversion function and not a class, and does not use the
 | |
|    * `new` keyword during construction.
 | |
|    */
 | |
|   function Seq<S extends Seq<unknown, unknown>>(seq: S): S;
 | |
|   function Seq<K, V>(collection: Collection.Keyed<K, V>): Seq.Keyed<K, V>;
 | |
|   function Seq<T>(collection: Collection.Set<T>): Seq.Set<T>;
 | |
|   function Seq<T>(
 | |
|     collection: Collection.Indexed<T> | Iterable<T> | ArrayLike<T>
 | |
|   ): Seq.Indexed<T>;
 | |
|   function Seq<V>(obj: { [key: string]: V }): Seq.Keyed<string, V>;
 | |
|   function Seq<K = unknown, V = unknown>(): Seq<K, V>;
 | |
| 
 | |
|   interface Seq<K, V> extends Collection<K, V> {
 | |
|     /**
 | |
|      * Some Seqs can describe their size lazily. When this is the case,
 | |
|      * size will be an integer. Otherwise it will be undefined.
 | |
|      *
 | |
|      * For example, Seqs returned from `map()` or `reverse()`
 | |
|      * preserve the size of the original `Seq` while `filter()` does not.
 | |
|      *
 | |
|      * Note: `Range`, `Repeat` and `Seq`s made from `Array`s and `Object`s will
 | |
|      * always have a size.
 | |
|      */
 | |
|     readonly size: number | undefined;
 | |
| 
 | |
|     // Force evaluation
 | |
| 
 | |
|     /**
 | |
|      * Because Sequences are lazy and designed to be chained together, they do
 | |
|      * not cache their results. For example, this map function is called a total
 | |
|      * of 6 times, as each `join` iterates the Seq of three values.
 | |
|      *
 | |
|      *     var squares = Seq([ 1, 2, 3 ]).map(x => x * x)
 | |
|      *     squares.join() + squares.join()
 | |
|      *
 | |
|      * If you know a `Seq` will be used multiple times, it may be more
 | |
|      * efficient to first cache it in memory. Here, the map function is called
 | |
|      * only 3 times.
 | |
|      *
 | |
|      *     var squares = Seq([ 1, 2, 3 ]).map(x => x * x).cacheResult()
 | |
|      *     squares.join() + squares.join()
 | |
|      *
 | |
|      * Use this method judiciously, as it must fully evaluate a Seq which can be
 | |
|      * a burden on memory and possibly performance.
 | |
|      *
 | |
|      * Note: after calling `cacheResult`, a Seq will always have a `size`.
 | |
|      */
 | |
|     cacheResult(): this;
 | |
| 
 | |
|     // Sequence algorithms
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Seq with values passed through a
 | |
|      * `mapper` function.
 | |
|      *
 | |
|      * ```js
 | |
|      * const { Seq } = require('immutable')
 | |
|      * Seq([ 1, 2 ]).map(x => 10 * x)
 | |
|      * // Seq [ 10, 20 ]
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `map()` always returns a new instance, even if it produced the same
 | |
|      * value at every step.
 | |
|      */
 | |
|     map<M>(
 | |
|       mapper: (value: V, key: K, iter: this) => M,
 | |
|       context?: unknown
 | |
|     ): Seq<K, M>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Seq with values passed through a
 | |
|      * `mapper` function.
 | |
|      *
 | |
|      * ```js
 | |
|      * const { Seq } = require('immutable')
 | |
|      * Seq([ 1, 2 ]).map(x => 10 * x)
 | |
|      * // Seq [ 10, 20 ]
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `map()` always returns a new instance, even if it produced the same
 | |
|      * value at every step.
 | |
|      * Note: used only for sets.
 | |
|      */
 | |
|     map<M>(
 | |
|       mapper: (value: V, key: K, iter: this) => M,
 | |
|       context?: unknown
 | |
|     ): Seq<M, M>;
 | |
| 
 | |
|     /**
 | |
|      * Flat-maps the Seq, returning a Seq of the same type.
 | |
|      *
 | |
|      * Similar to `seq.map(...).flatten(true)`.
 | |
|      */
 | |
|     flatMap<M>(
 | |
|       mapper: (value: V, key: K, iter: this) => Iterable<M>,
 | |
|       context?: unknown
 | |
|     ): Seq<K, M>;
 | |
| 
 | |
|     /**
 | |
|      * Flat-maps the Seq, returning a Seq of the same type.
 | |
|      *
 | |
|      * Similar to `seq.map(...).flatten(true)`.
 | |
|      * Note: Used only for sets.
 | |
|      */
 | |
|     flatMap<M>(
 | |
|       mapper: (value: V, key: K, iter: this) => Iterable<M>,
 | |
|       context?: unknown
 | |
|     ): Seq<M, M>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Seq with only the values for which the `predicate`
 | |
|      * function returns true.
 | |
|      *
 | |
|      * Note: `filter()` always returns a new instance, even if it results in
 | |
|      * not filtering out any values.
 | |
|      */
 | |
|     filter<F extends V>(
 | |
|       predicate: (value: V, key: K, iter: this) => value is F,
 | |
|       context?: unknown
 | |
|     ): Seq<K, F>;
 | |
|     filter(
 | |
|       predicate: (value: V, key: K, iter: this) => unknown,
 | |
|       context?: unknown
 | |
|     ): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Seq with the values for which the `predicate` function
 | |
|      * returns false and another for which is returns true.
 | |
|      */
 | |
|     partition<F extends V, C>(
 | |
|       predicate: (this: C, value: V, key: K, iter: this) => value is F,
 | |
|       context?: C
 | |
|     ): [Seq<K, V>, Seq<K, F>];
 | |
|     partition<C>(
 | |
|       predicate: (this: C, value: V, key: K, iter: this) => unknown,
 | |
|       context?: C
 | |
|     ): [this, this];
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * The `Collection` is a set of (key, value) entries which can be iterated, and
 | |
|    * is the base class for all collections in `immutable`, allowing them to
 | |
|    * make use of all the Collection methods (such as `map` and `filter`).
 | |
|    *
 | |
|    * Note: A collection is always iterated in the same order, however that order
 | |
|    * may not always be well defined, as is the case for the `Map` and `Set`.
 | |
|    *
 | |
|    * Collection is the abstract base class for concrete data structures. It
 | |
|    * cannot be constructed directly.
 | |
|    *
 | |
|    * Implementations should extend one of the subclasses, `Collection.Keyed`,
 | |
|    * `Collection.Indexed`, or `Collection.Set`.
 | |
|    */
 | |
|   namespace Collection {
 | |
|     /**
 | |
|      * @deprecated use `const { isKeyed } = require('immutable')`
 | |
|      */
 | |
|     function isKeyed(
 | |
|       maybeKeyed: unknown
 | |
|     ): maybeKeyed is Collection.Keyed<unknown, unknown>;
 | |
| 
 | |
|     /**
 | |
|      * @deprecated use `const { isIndexed } = require('immutable')`
 | |
|      */
 | |
|     function isIndexed(
 | |
|       maybeIndexed: unknown
 | |
|     ): maybeIndexed is Collection.Indexed<unknown>;
 | |
| 
 | |
|     /**
 | |
|      * @deprecated use `const { isAssociative } = require('immutable')`
 | |
|      */
 | |
|     function isAssociative(
 | |
|       maybeAssociative: unknown
 | |
|     ): maybeAssociative is
 | |
|       | Collection.Keyed<unknown, unknown>
 | |
|       | Collection.Indexed<unknown>;
 | |
| 
 | |
|     /**
 | |
|      * @deprecated use `const { isOrdered } = require('immutable')`
 | |
|      */
 | |
|     function isOrdered(maybeOrdered: unknown): boolean;
 | |
| 
 | |
|     /**
 | |
|      * Keyed Collections have discrete keys tied to each value.
 | |
|      *
 | |
|      * When iterating `Collection.Keyed`, each iteration will yield a `[K, V]`
 | |
|      * tuple, in other words, `Collection#entries` is the default iterator for
 | |
|      * Keyed Collections.
 | |
|      */
 | |
|     namespace Keyed {}
 | |
| 
 | |
|     /**
 | |
|      * Creates a Collection.Keyed
 | |
|      *
 | |
|      * Similar to `Collection()`, however it expects collection-likes of [K, V]
 | |
|      * tuples if not constructed from a Collection.Keyed or JS Object.
 | |
|      *
 | |
|      * Note: `Collection.Keyed` is a conversion function and not a class, and
 | |
|      * does not use the `new` keyword during construction.
 | |
|      */
 | |
|     function Keyed<K, V>(collection?: Iterable<[K, V]>): Collection.Keyed<K, V>;
 | |
|     function Keyed<V>(obj: { [key: string]: V }): Collection.Keyed<string, V>;
 | |
| 
 | |
|     interface Keyed<K, V> extends Collection<K, V> {
 | |
|       /**
 | |
|        * Deeply converts this Keyed collection to equivalent native JavaScript Object.
 | |
|        *
 | |
|        * Converts keys to Strings.
 | |
|        */
 | |
|       toJS(): { [key in string | number | symbol]: DeepCopy<V> };
 | |
| 
 | |
|       /**
 | |
|        * Shallowly converts this Keyed collection to equivalent native JavaScript Object.
 | |
|        *
 | |
|        * Converts keys to Strings.
 | |
|        */
 | |
|       toJSON(): { [key in string | number | symbol]: V };
 | |
| 
 | |
|       /**
 | |
|        * Shallowly converts this collection to an Array.
 | |
|        */
 | |
|       toArray(): Array<[K, V]>;
 | |
| 
 | |
|       /**
 | |
|        * Returns Seq.Keyed.
 | |
|        * @override
 | |
|        */
 | |
|       toSeq(): Seq.Keyed<K, V>;
 | |
| 
 | |
|       // Sequence functions
 | |
| 
 | |
|       /**
 | |
|        * Returns a new Collection.Keyed of the same type where the keys and values
 | |
|        * have been flipped.
 | |
|        *
 | |
|        * <!-- runkit:activate -->
 | |
|        * ```js
 | |
|        * const { Map } = require('immutable')
 | |
|        * Map({ a: 'z', b: 'y' }).flip()
 | |
|        * // Map { "z": "a", "y": "b" }
 | |
|        * ```
 | |
|        */
 | |
|       flip(): Collection.Keyed<V, K>;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new Collection with other collections concatenated to this one.
 | |
|        */
 | |
|       concat<KC, VC>(
 | |
|         ...collections: Array<Iterable<[KC, VC]>>
 | |
|       ): Collection.Keyed<K | KC, V | VC>;
 | |
|       concat<C>(
 | |
|         ...collections: Array<{ [key: string]: C }>
 | |
|       ): Collection.Keyed<K | string, V | C>;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new Collection.Keyed with values passed through a
 | |
|        * `mapper` function.
 | |
|        *
 | |
|        * ```js
 | |
|        * const { Collection } = require('immutable')
 | |
|        * Collection.Keyed({ a: 1, b: 2 }).map(x => 10 * x)
 | |
|        * // Seq { "a": 10, "b": 20 }
 | |
|        * ```
 | |
|        *
 | |
|        * Note: `map()` always returns a new instance, even if it produced the
 | |
|        * same value at every step.
 | |
|        */
 | |
|       map<M>(
 | |
|         mapper: (value: V, key: K, iter: this) => M,
 | |
|         context?: unknown
 | |
|       ): Collection.Keyed<K, M>;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new Collection.Keyed of the same type with keys passed through
 | |
|        * a `mapper` function.
 | |
|        *
 | |
|        * <!-- runkit:activate -->
 | |
|        * ```js
 | |
|        * const { Map } = require('immutable')
 | |
|        * Map({ a: 1, b: 2 }).mapKeys(x => x.toUpperCase())
 | |
|        * // Map { "A": 1, "B": 2 }
 | |
|        * ```
 | |
|        *
 | |
|        * Note: `mapKeys()` always returns a new instance, even if it produced
 | |
|        * the same key at every step.
 | |
|        */
 | |
|       mapKeys<M>(
 | |
|         mapper: (key: K, value: V, iter: this) => M,
 | |
|         context?: unknown
 | |
|       ): Collection.Keyed<M, V>;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new Collection.Keyed of the same type with entries
 | |
|        * ([key, value] tuples) passed through a `mapper` function.
 | |
|        *
 | |
|        * <!-- runkit:activate -->
 | |
|        * ```js
 | |
|        * const { Map } = require('immutable')
 | |
|        * Map({ a: 1, b: 2 })
 | |
|        *   .mapEntries(([ k, v ]) => [ k.toUpperCase(), v * 2 ])
 | |
|        * // Map { "A": 2, "B": 4 }
 | |
|        * ```
 | |
|        *
 | |
|        * Note: `mapEntries()` always returns a new instance, even if it produced
 | |
|        * the same entry at every step.
 | |
|        *
 | |
|        * If the mapper function returns `undefined`, then the entry will be filtered
 | |
|        */
 | |
|       mapEntries<KM, VM>(
 | |
|         mapper: (
 | |
|           entry: [K, V],
 | |
|           index: number,
 | |
|           iter: this
 | |
|         ) => [KM, VM] | undefined,
 | |
|         context?: unknown
 | |
|       ): Collection.Keyed<KM, VM>;
 | |
| 
 | |
|       /**
 | |
|        * Flat-maps the Collection, returning a Collection of the same type.
 | |
|        *
 | |
|        * Similar to `collection.map(...).flatten(true)`.
 | |
|        */
 | |
|       flatMap<KM, VM>(
 | |
|         mapper: (value: V, key: K, iter: this) => Iterable<[KM, VM]>,
 | |
|         context?: unknown
 | |
|       ): Collection.Keyed<KM, VM>;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new Collection with only the values for which the `predicate`
 | |
|        * function returns true.
 | |
|        *
 | |
|        * Note: `filter()` always returns a new instance, even if it results in
 | |
|        * not filtering out any values.
 | |
|        */
 | |
|       filter<F extends V>(
 | |
|         predicate: (value: V, key: K, iter: this) => value is F,
 | |
|         context?: unknown
 | |
|       ): Collection.Keyed<K, F>;
 | |
|       filter(
 | |
|         predicate: (value: V, key: K, iter: this) => unknown,
 | |
|         context?: unknown
 | |
|       ): this;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new keyed Collection with the values for which the
 | |
|        * `predicate` function returns false and another for which is returns
 | |
|        * true.
 | |
|        */
 | |
|       partition<F extends V, C>(
 | |
|         predicate: (this: C, value: V, key: K, iter: this) => value is F,
 | |
|         context?: C
 | |
|       ): [Collection.Keyed<K, V>, Collection.Keyed<K, F>];
 | |
|       partition<C>(
 | |
|         predicate: (this: C, value: V, key: K, iter: this) => unknown,
 | |
|         context?: C
 | |
|       ): [this, this];
 | |
| 
 | |
|       [Symbol.iterator](): IterableIterator<[K, V]>;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Indexed Collections have incrementing numeric keys. They exhibit
 | |
|      * slightly different behavior than `Collection.Keyed` for some methods in order
 | |
|      * to better mirror the behavior of JavaScript's `Array`, and add methods
 | |
|      * which do not make sense on non-indexed Collections such as `indexOf`.
 | |
|      *
 | |
|      * Unlike JavaScript arrays, `Collection.Indexed`s are always dense. "Unset"
 | |
|      * indices and `undefined` indices are indistinguishable, and all indices from
 | |
|      * 0 to `size` are visited when iterated.
 | |
|      *
 | |
|      * All Collection.Indexed methods return re-indexed Collections. In other words,
 | |
|      * indices always start at 0 and increment until size. If you wish to
 | |
|      * preserve indices, using them as keys, convert to a Collection.Keyed by
 | |
|      * calling `toKeyedSeq`.
 | |
|      */
 | |
|     namespace Indexed {}
 | |
| 
 | |
|     /**
 | |
|      * Creates a new Collection.Indexed.
 | |
|      *
 | |
|      * Note: `Collection.Indexed` is a conversion function and not a class, and
 | |
|      * does not use the `new` keyword during construction.
 | |
|      */
 | |
|     function Indexed<T>(
 | |
|       collection?: Iterable<T> | ArrayLike<T>
 | |
|     ): Collection.Indexed<T>;
 | |
| 
 | |
|     interface Indexed<T> extends Collection<number, T> {
 | |
|       /**
 | |
|        * Deeply converts this Indexed collection to equivalent native JavaScript Array.
 | |
|        */
 | |
|       toJS(): Array<DeepCopy<T>>;
 | |
| 
 | |
|       /**
 | |
|        * Shallowly converts this Indexed collection to equivalent native JavaScript Array.
 | |
|        */
 | |
|       toJSON(): Array<T>;
 | |
| 
 | |
|       /**
 | |
|        * Shallowly converts this collection to an Array.
 | |
|        */
 | |
|       toArray(): Array<T>;
 | |
| 
 | |
|       // Reading values
 | |
| 
 | |
|       /**
 | |
|        * Returns the value associated with the provided index, or notSetValue if
 | |
|        * the index is beyond the bounds of the Collection.
 | |
|        *
 | |
|        * `index` may be a negative number, which indexes back from the end of the
 | |
|        * Collection. `s.get(-1)` gets the last item in the Collection.
 | |
|        */
 | |
|       get<NSV>(index: number, notSetValue: NSV): T | NSV;
 | |
|       get(index: number): T | undefined;
 | |
| 
 | |
|       // Conversion to Seq
 | |
| 
 | |
|       /**
 | |
|        * Returns Seq.Indexed.
 | |
|        * @override
 | |
|        */
 | |
|       toSeq(): Seq.Indexed<T>;
 | |
| 
 | |
|       /**
 | |
|        * If this is a collection of [key, value] entry tuples, it will return a
 | |
|        * Seq.Keyed of those entries.
 | |
|        */
 | |
|       fromEntrySeq(): Seq.Keyed<unknown, unknown>;
 | |
| 
 | |
|       // Combination
 | |
| 
 | |
|       /**
 | |
|        * Returns a Collection of the same type with `separator` between each item
 | |
|        * in this Collection.
 | |
|        */
 | |
|       interpose(separator: T): this;
 | |
| 
 | |
|       /**
 | |
|        * Returns a Collection of the same type with the provided `collections`
 | |
|        * interleaved into this collection.
 | |
|        *
 | |
|        * The resulting Collection includes the first item from each, then the
 | |
|        * second from each, etc.
 | |
|        *
 | |
|        * <!-- runkit:activate
 | |
|        *      { "preamble": "require('immutable')"}
 | |
|        * -->
 | |
|        * ```js
 | |
|        * const { List } = require('immutable')
 | |
|        * List([ 1, 2, 3 ]).interleave(List([ 'A', 'B', 'C' ]))
 | |
|        * // List [ 1, "A", 2, "B", 3, "C" ]
 | |
|        * ```
 | |
|        *
 | |
|        * The shortest Collection stops interleave.
 | |
|        *
 | |
|        * <!-- runkit:activate
 | |
|        *      { "preamble": "const { List } = require('immutable')" }
 | |
|        * -->
 | |
|        * ```js
 | |
|        * List([ 1, 2, 3 ]).interleave(
 | |
|        *   List([ 'A', 'B' ]),
 | |
|        *   List([ 'X', 'Y', 'Z' ])
 | |
|        * )
 | |
|        * // List [ 1, "A", "X", 2, "B", "Y" ]
 | |
|        * ```
 | |
|        *
 | |
|        * Since `interleave()` re-indexes values, it produces a complete copy,
 | |
|        * which has `O(N)` complexity.
 | |
|        *
 | |
|        * Note: `interleave` *cannot* be used in `withMutations`.
 | |
|        */
 | |
|       interleave(...collections: Array<Collection<unknown, T>>): this;
 | |
| 
 | |
|       /**
 | |
|        * Splice returns a new indexed Collection by replacing a region of this
 | |
|        * Collection with new values. If values are not provided, it only skips the
 | |
|        * region to be removed.
 | |
|        *
 | |
|        * `index` may be a negative number, which indexes back from the end of the
 | |
|        * Collection. `s.splice(-2)` splices after the second to last item.
 | |
|        *
 | |
|        * <!-- runkit:activate -->
 | |
|        * ```js
 | |
|        * const { List } = require('immutable')
 | |
|        * List([ 'a', 'b', 'c', 'd' ]).splice(1, 2, 'q', 'r', 's')
 | |
|        * // List [ "a", "q", "r", "s", "d" ]
 | |
|        * ```
 | |
|        *
 | |
|        * Since `splice()` re-indexes values, it produces a complete copy, which
 | |
|        * has `O(N)` complexity.
 | |
|        *
 | |
|        * Note: `splice` *cannot* be used in `withMutations`.
 | |
|        */
 | |
|       splice(index: number, removeNum: number, ...values: Array<T>): this;
 | |
| 
 | |
|       /**
 | |
|        * Returns a Collection of the same type "zipped" with the provided
 | |
|        * collections.
 | |
|        *
 | |
|        * Like `zipWith`, but using the default `zipper`: creating an `Array`.
 | |
|        *
 | |
|        *
 | |
|        * <!-- runkit:activate
 | |
|        *      { "preamble": "const { List } = require('immutable')" }
 | |
|        * -->
 | |
|        * ```js
 | |
|        * const a = List([ 1, 2, 3 ]);
 | |
|        * const b = List([ 4, 5, 6 ]);
 | |
|        * const c = a.zip(b); // List [ [ 1, 4 ], [ 2, 5 ], [ 3, 6 ] ]
 | |
|        * ```
 | |
|        */
 | |
|       zip<U>(other: Collection<unknown, U>): Collection.Indexed<[T, U]>;
 | |
|       zip<U, V>(
 | |
|         other: Collection<unknown, U>,
 | |
|         other2: Collection<unknown, V>
 | |
|       ): Collection.Indexed<[T, U, V]>;
 | |
|       zip(
 | |
|         ...collections: Array<Collection<unknown, unknown>>
 | |
|       ): Collection.Indexed<unknown>;
 | |
| 
 | |
|       /**
 | |
|        * Returns a Collection "zipped" with the provided collections.
 | |
|        *
 | |
|        * Unlike `zip`, `zipAll` continues zipping until the longest collection is
 | |
|        * exhausted. Missing values from shorter collections are filled with `undefined`.
 | |
|        *
 | |
|        * ```js
 | |
|        * const a = List([ 1, 2 ]);
 | |
|        * const b = List([ 3, 4, 5 ]);
 | |
|        * const c = a.zipAll(b); // List [ [ 1, 3 ], [ 2, 4 ], [ undefined, 5 ] ]
 | |
|        * ```
 | |
|        */
 | |
|       zipAll<U>(other: Collection<unknown, U>): Collection.Indexed<[T, U]>;
 | |
|       zipAll<U, V>(
 | |
|         other: Collection<unknown, U>,
 | |
|         other2: Collection<unknown, V>
 | |
|       ): Collection.Indexed<[T, U, V]>;
 | |
|       zipAll(
 | |
|         ...collections: Array<Collection<unknown, unknown>>
 | |
|       ): Collection.Indexed<unknown>;
 | |
| 
 | |
|       /**
 | |
|        * Returns a Collection of the same type "zipped" with the provided
 | |
|        * collections by using a custom `zipper` function.
 | |
|        *
 | |
|        * <!-- runkit:activate
 | |
|        *      { "preamble": "const { List } = require('immutable')" }
 | |
|        * -->
 | |
|        * ```js
 | |
|        * const a = List([ 1, 2, 3 ]);
 | |
|        * const b = List([ 4, 5, 6 ]);
 | |
|        * const c = a.zipWith((a, b) => a + b, b);
 | |
|        * // List [ 5, 7, 9 ]
 | |
|        * ```
 | |
|        */
 | |
|       zipWith<U, Z>(
 | |
|         zipper: (value: T, otherValue: U) => Z,
 | |
|         otherCollection: Collection<unknown, U>
 | |
|       ): Collection.Indexed<Z>;
 | |
|       zipWith<U, V, Z>(
 | |
|         zipper: (value: T, otherValue: U, thirdValue: V) => Z,
 | |
|         otherCollection: Collection<unknown, U>,
 | |
|         thirdCollection: Collection<unknown, V>
 | |
|       ): Collection.Indexed<Z>;
 | |
|       zipWith<Z>(
 | |
|         zipper: (...values: Array<unknown>) => Z,
 | |
|         ...collections: Array<Collection<unknown, unknown>>
 | |
|       ): Collection.Indexed<Z>;
 | |
| 
 | |
|       // Search for value
 | |
| 
 | |
|       /**
 | |
|        * Returns the first index at which a given value can be found in the
 | |
|        * Collection, or -1 if it is not present.
 | |
|        */
 | |
|       indexOf(searchValue: T): number;
 | |
| 
 | |
|       /**
 | |
|        * Returns the last index at which a given value can be found in the
 | |
|        * Collection, or -1 if it is not present.
 | |
|        */
 | |
|       lastIndexOf(searchValue: T): number;
 | |
| 
 | |
|       /**
 | |
|        * Returns the first index in the Collection where a value satisfies the
 | |
|        * provided predicate function. Otherwise -1 is returned.
 | |
|        */
 | |
|       findIndex(
 | |
|         predicate: (value: T, index: number, iter: this) => boolean,
 | |
|         context?: unknown
 | |
|       ): number;
 | |
| 
 | |
|       /**
 | |
|        * Returns the last index in the Collection where a value satisfies the
 | |
|        * provided predicate function. Otherwise -1 is returned.
 | |
|        */
 | |
|       findLastIndex(
 | |
|         predicate: (value: T, index: number, iter: this) => boolean,
 | |
|         context?: unknown
 | |
|       ): number;
 | |
| 
 | |
|       // Sequence algorithms
 | |
| 
 | |
|       /**
 | |
|        * Returns a new Collection with other collections concatenated to this one.
 | |
|        */
 | |
|       concat<C>(
 | |
|         ...valuesOrCollections: Array<Iterable<C> | C>
 | |
|       ): Collection.Indexed<T | C>;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new Collection.Indexed with values passed through a
 | |
|        * `mapper` function.
 | |
|        *
 | |
|        * ```js
 | |
|        * const { Collection } = require('immutable')
 | |
|        * Collection.Indexed([1,2]).map(x => 10 * x)
 | |
|        * // Seq [ 1, 2 ]
 | |
|        * ```
 | |
|        *
 | |
|        * Note: `map()` always returns a new instance, even if it produced the
 | |
|        * same value at every step.
 | |
|        */
 | |
|       map<M>(
 | |
|         mapper: (value: T, key: number, iter: this) => M,
 | |
|         context?: unknown
 | |
|       ): Collection.Indexed<M>;
 | |
| 
 | |
|       /**
 | |
|        * Flat-maps the Collection, returning a Collection of the same type.
 | |
|        *
 | |
|        * Similar to `collection.map(...).flatten(true)`.
 | |
|        */
 | |
|       flatMap<M>(
 | |
|         mapper: (value: T, key: number, iter: this) => Iterable<M>,
 | |
|         context?: unknown
 | |
|       ): Collection.Indexed<M>;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new Collection with only the values for which the `predicate`
 | |
|        * function returns true.
 | |
|        *
 | |
|        * Note: `filter()` always returns a new instance, even if it results in
 | |
|        * not filtering out any values.
 | |
|        */
 | |
|       filter<F extends T>(
 | |
|         predicate: (value: T, index: number, iter: this) => value is F,
 | |
|         context?: unknown
 | |
|       ): Collection.Indexed<F>;
 | |
|       filter(
 | |
|         predicate: (value: T, index: number, iter: this) => unknown,
 | |
|         context?: unknown
 | |
|       ): this;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new indexed Collection with the values for which the
 | |
|        * `predicate` function returns false and another for which is returns
 | |
|        * true.
 | |
|        */
 | |
|       partition<F extends T, C>(
 | |
|         predicate: (this: C, value: T, index: number, iter: this) => value is F,
 | |
|         context?: C
 | |
|       ): [Collection.Indexed<T>, Collection.Indexed<F>];
 | |
|       partition<C>(
 | |
|         predicate: (this: C, value: T, index: number, iter: this) => unknown,
 | |
|         context?: C
 | |
|       ): [this, this];
 | |
| 
 | |
|       [Symbol.iterator](): IterableIterator<T>;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Set Collections only represent values. They have no associated keys or
 | |
|      * indices. Duplicate values are possible in the lazy `Seq.Set`s, however
 | |
|      * the concrete `Set` Collection does not allow duplicate values.
 | |
|      *
 | |
|      * Collection methods on Collection.Set such as `map` and `forEach` will provide
 | |
|      * the value as both the first and second arguments to the provided function.
 | |
|      *
 | |
|      * ```js
 | |
|      * const { Collection } = require('immutable')
 | |
|      * const seq = Collection.Set([ 'A', 'B', 'C' ])
 | |
|      * // Seq { "A", "B", "C" }
 | |
|      * seq.forEach((v, k) =>
 | |
|      *  assert.equal(v, k)
 | |
|      * )
 | |
|      * ```
 | |
|      */
 | |
|     namespace Set {}
 | |
| 
 | |
|     /**
 | |
|      * Similar to `Collection()`, but always returns a Collection.Set.
 | |
|      *
 | |
|      * Note: `Collection.Set` is a factory function and not a class, and does
 | |
|      * not use the `new` keyword during construction.
 | |
|      */
 | |
|     function Set<T>(collection?: Iterable<T> | ArrayLike<T>): Collection.Set<T>;
 | |
| 
 | |
|     interface Set<T> extends Collection<T, T> {
 | |
|       /**
 | |
|        * Deeply converts this Set collection to equivalent native JavaScript Array.
 | |
|        */
 | |
|       toJS(): Array<DeepCopy<T>>;
 | |
| 
 | |
|       /**
 | |
|        * Shallowly converts this Set collection to equivalent native JavaScript Array.
 | |
|        */
 | |
|       toJSON(): Array<T>;
 | |
| 
 | |
|       /**
 | |
|        * Shallowly converts this collection to an Array.
 | |
|        */
 | |
|       toArray(): Array<T>;
 | |
| 
 | |
|       /**
 | |
|        * Returns Seq.Set.
 | |
|        * @override
 | |
|        */
 | |
|       toSeq(): Seq.Set<T>;
 | |
| 
 | |
|       // Sequence algorithms
 | |
| 
 | |
|       /**
 | |
|        * Returns a new Collection with other collections concatenated to this one.
 | |
|        */
 | |
|       concat<U>(...collections: Array<Iterable<U>>): Collection.Set<T | U>;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new Collection.Set with values passed through a
 | |
|        * `mapper` function.
 | |
|        *
 | |
|        * ```
 | |
|        * Collection.Set([ 1, 2 ]).map(x => 10 * x)
 | |
|        * // Seq { 1, 2 }
 | |
|        * ```
 | |
|        *
 | |
|        * Note: `map()` always returns a new instance, even if it produced the
 | |
|        * same value at every step.
 | |
|        */
 | |
|       map<M>(
 | |
|         mapper: (value: T, key: T, iter: this) => M,
 | |
|         context?: unknown
 | |
|       ): Collection.Set<M>;
 | |
| 
 | |
|       /**
 | |
|        * Flat-maps the Collection, returning a Collection of the same type.
 | |
|        *
 | |
|        * Similar to `collection.map(...).flatten(true)`.
 | |
|        */
 | |
|       flatMap<M>(
 | |
|         mapper: (value: T, key: T, iter: this) => Iterable<M>,
 | |
|         context?: unknown
 | |
|       ): Collection.Set<M>;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new Collection with only the values for which the `predicate`
 | |
|        * function returns true.
 | |
|        *
 | |
|        * Note: `filter()` always returns a new instance, even if it results in
 | |
|        * not filtering out any values.
 | |
|        */
 | |
|       filter<F extends T>(
 | |
|         predicate: (value: T, key: T, iter: this) => value is F,
 | |
|         context?: unknown
 | |
|       ): Collection.Set<F>;
 | |
|       filter(
 | |
|         predicate: (value: T, key: T, iter: this) => unknown,
 | |
|         context?: unknown
 | |
|       ): this;
 | |
| 
 | |
|       /**
 | |
|        * Returns a new set Collection with the values for which the
 | |
|        * `predicate` function returns false and another for which is returns
 | |
|        * true.
 | |
|        */
 | |
|       partition<F extends T, C>(
 | |
|         predicate: (this: C, value: T, key: T, iter: this) => value is F,
 | |
|         context?: C
 | |
|       ): [Collection.Set<T>, Collection.Set<F>];
 | |
|       partition<C>(
 | |
|         predicate: (this: C, value: T, key: T, iter: this) => unknown,
 | |
|         context?: C
 | |
|       ): [this, this];
 | |
| 
 | |
|       [Symbol.iterator](): IterableIterator<T>;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Creates a Collection.
 | |
|    *
 | |
|    * The type of Collection created is based on the input.
 | |
|    *
 | |
|    *   * If an `Collection`, that same `Collection`.
 | |
|    *   * If an Array-like, an `Collection.Indexed`.
 | |
|    *   * If an Object with an Iterator defined, an `Collection.Indexed`.
 | |
|    *   * If an Object, an `Collection.Keyed`.
 | |
|    *
 | |
|    * This methods forces the conversion of Objects and Strings to Collections.
 | |
|    * If you want to ensure that a Collection of one item is returned, use
 | |
|    * `Seq.of`.
 | |
|    *
 | |
|    * Note: An Iterator itself will be treated as an object, becoming a `Seq.Keyed`,
 | |
|    * which is usually not what you want. You should turn your Iterator Object into
 | |
|    * an iterable object by defining a Symbol.iterator (or @@iterator) method which
 | |
|    * returns `this`.
 | |
|    *
 | |
|    * Note: `Collection` is a conversion function and not a class, and does not
 | |
|    * use the `new` keyword during construction.
 | |
|    */
 | |
|   function Collection<I extends Collection<unknown, unknown>>(collection: I): I;
 | |
|   function Collection<T>(
 | |
|     collection: Iterable<T> | ArrayLike<T>
 | |
|   ): Collection.Indexed<T>;
 | |
|   function Collection<V>(obj: {
 | |
|     [key: string]: V;
 | |
|   }): Collection.Keyed<string, V>;
 | |
|   function Collection<K = unknown, V = unknown>(): Collection<K, V>;
 | |
| 
 | |
|   interface Collection<K, V> extends ValueObject {
 | |
|     // Value equality
 | |
| 
 | |
|     /**
 | |
|      * True if this and the other Collection have value equality, as defined
 | |
|      * by `Immutable.is()`.
 | |
|      *
 | |
|      * Note: This is equivalent to `Immutable.is(this, other)`, but provided to
 | |
|      * allow for chained expressions.
 | |
|      */
 | |
|     equals(other: unknown): boolean;
 | |
| 
 | |
|     /**
 | |
|      * Computes and returns the hashed identity for this Collection.
 | |
|      *
 | |
|      * The `hashCode` of a Collection is used to determine potential equality,
 | |
|      * and is used when adding this to a `Set` or as a key in a `Map`, enabling
 | |
|      * lookup via a different instance.
 | |
|      *
 | |
|      * <!-- runkit:activate
 | |
|      *      { "preamble": "const { Set,  List } = require('immutable')" }
 | |
|      * -->
 | |
|      * ```js
 | |
|      * const a = List([ 1, 2, 3 ]);
 | |
|      * const b = List([ 1, 2, 3 ]);
 | |
|      * assert.notStrictEqual(a, b); // different instances
 | |
|      * const set = Set([ a ]);
 | |
|      * assert.equal(set.has(b), true);
 | |
|      * ```
 | |
|      *
 | |
|      * If two values have the same `hashCode`, they are [not guaranteed
 | |
|      * to be equal][Hash Collision]. If two values have different `hashCode`s,
 | |
|      * they must not be equal.
 | |
|      *
 | |
|      * [Hash Collision]: https://en.wikipedia.org/wiki/Collision_(computer_science)
 | |
|      */
 | |
|     hashCode(): number;
 | |
| 
 | |
|     // Reading values
 | |
| 
 | |
|     /**
 | |
|      * Returns the value associated with the provided key, or notSetValue if
 | |
|      * the Collection does not contain this key.
 | |
|      *
 | |
|      * Note: it is possible a key may be associated with an `undefined` value,
 | |
|      * so if `notSetValue` is not provided and this method returns `undefined`,
 | |
|      * that does not guarantee the key was not found.
 | |
|      */
 | |
|     get<NSV>(key: K, notSetValue: NSV): V | NSV;
 | |
|     get(key: K): V | undefined;
 | |
| 
 | |
|     /**
 | |
|      * True if a key exists within this `Collection`, using `Immutable.is`
 | |
|      * to determine equality
 | |
|      */
 | |
|     has(key: K): boolean;
 | |
| 
 | |
|     /**
 | |
|      * True if a value exists within this `Collection`, using `Immutable.is`
 | |
|      * to determine equality
 | |
|      * @alias contains
 | |
|      */
 | |
|     includes(value: V): boolean;
 | |
|     contains(value: V): boolean;
 | |
| 
 | |
|     /**
 | |
|      * In case the `Collection` is not empty returns the first element of the
 | |
|      * `Collection`.
 | |
|      * In case the `Collection` is empty returns the optional default
 | |
|      * value if provided, if no default value is provided returns undefined.
 | |
|      */
 | |
|     first<NSV = undefined>(notSetValue?: NSV): V | NSV;
 | |
| 
 | |
|     /**
 | |
|      * In case the `Collection` is not empty returns the last element of the
 | |
|      * `Collection`.
 | |
|      * In case the `Collection` is empty returns the optional default
 | |
|      * value if provided, if no default value is provided returns undefined.
 | |
|      */
 | |
|     last<NSV = undefined>(notSetValue?: NSV): V | NSV;
 | |
| 
 | |
|     // Reading deep values
 | |
| 
 | |
|     /**
 | |
|      * Returns the value found by following a path of keys or indices through
 | |
|      * nested Collections.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Map, List } = require('immutable')
 | |
|      * const deepData = Map({ x: List([ Map({ y: 123 }) ]) });
 | |
|      * deepData.getIn(['x', 0, 'y']) // 123
 | |
|      * ```
 | |
|      *
 | |
|      * Plain JavaScript Object or Arrays may be nested within an Immutable.js
 | |
|      * Collection, and getIn() can access those values as well:
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Map, List } = require('immutable')
 | |
|      * const deepData = Map({ x: [ { y: 123 } ] });
 | |
|      * deepData.getIn(['x', 0, 'y']) // 123
 | |
|      * ```
 | |
|      */
 | |
|     getIn(searchKeyPath: Iterable<unknown>, notSetValue?: unknown): unknown;
 | |
| 
 | |
|     /**
 | |
|      * True if the result of following a path of keys or indices through nested
 | |
|      * Collections results in a set value.
 | |
|      */
 | |
|     hasIn(searchKeyPath: Iterable<unknown>): boolean;
 | |
| 
 | |
|     // Persistent changes
 | |
| 
 | |
|     /**
 | |
|      * This can be very useful as a way to "chain" a normal function into a
 | |
|      * sequence of methods. RxJS calls this "let" and lodash calls it "thru".
 | |
|      *
 | |
|      * For example, to sum a Seq after mapping and filtering:
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Seq } = require('immutable')
 | |
|      *
 | |
|      * function sum(collection) {
 | |
|      *   return collection.reduce((sum, x) => sum + x, 0)
 | |
|      * }
 | |
|      *
 | |
|      * Seq([ 1, 2, 3 ])
 | |
|      *   .map(x => x + 1)
 | |
|      *   .filter(x => x % 2 === 0)
 | |
|      *   .update(sum)
 | |
|      * // 6
 | |
|      * ```
 | |
|      */
 | |
|     update<R>(updater: (value: this) => R): R;
 | |
| 
 | |
|     // Conversion to JavaScript types
 | |
| 
 | |
|     /**
 | |
|      * Deeply converts this Collection to equivalent native JavaScript Array or Object.
 | |
|      *
 | |
|      * `Collection.Indexed`, and `Collection.Set` become `Array`, while
 | |
|      * `Collection.Keyed` become `Object`, converting keys to Strings.
 | |
|      */
 | |
|     toJS():
 | |
|       | Array<DeepCopy<V>>
 | |
|       | { [key in string | number | symbol]: DeepCopy<V> };
 | |
| 
 | |
|     /**
 | |
|      * Shallowly converts this Collection to equivalent native JavaScript Array or Object.
 | |
|      *
 | |
|      * `Collection.Indexed`, and `Collection.Set` become `Array`, while
 | |
|      * `Collection.Keyed` become `Object`, converting keys to Strings.
 | |
|      */
 | |
|     toJSON(): Array<V> | { [key in string | number | symbol]: V };
 | |
| 
 | |
|     /**
 | |
|      * Shallowly converts this collection to an Array.
 | |
|      *
 | |
|      * `Collection.Indexed`, and `Collection.Set` produce an Array of values.
 | |
|      * `Collection.Keyed` produce an Array of [key, value] tuples.
 | |
|      */
 | |
|     toArray(): Array<V> | Array<[K, V]>;
 | |
| 
 | |
|     /**
 | |
|      * Shallowly converts this Collection to an Object.
 | |
|      *
 | |
|      * Converts keys to Strings.
 | |
|      */
 | |
|     toObject(): { [key: string]: V };
 | |
| 
 | |
|     // Conversion to Collections
 | |
| 
 | |
|     /**
 | |
|      * Converts this Collection to a Map, Throws if keys are not hashable.
 | |
|      *
 | |
|      * Note: This is equivalent to `Map(this.toKeyedSeq())`, but provided
 | |
|      * for convenience and to allow for chained expressions.
 | |
|      */
 | |
|     toMap(): Map<K, V>;
 | |
| 
 | |
|     /**
 | |
|      * Converts this Collection to a Map, maintaining the order of iteration.
 | |
|      *
 | |
|      * Note: This is equivalent to `OrderedMap(this.toKeyedSeq())`, but
 | |
|      * provided for convenience and to allow for chained expressions.
 | |
|      */
 | |
|     toOrderedMap(): OrderedMap<K, V>;
 | |
| 
 | |
|     /**
 | |
|      * Converts this Collection to a Set, discarding keys. Throws if values
 | |
|      * are not hashable.
 | |
|      *
 | |
|      * Note: This is equivalent to `Set(this)`, but provided to allow for
 | |
|      * chained expressions.
 | |
|      */
 | |
|     toSet(): Set<V>;
 | |
| 
 | |
|     /**
 | |
|      * Converts this Collection to a Set, maintaining the order of iteration and
 | |
|      * discarding keys.
 | |
|      *
 | |
|      * Note: This is equivalent to `OrderedSet(this.valueSeq())`, but provided
 | |
|      * for convenience and to allow for chained expressions.
 | |
|      */
 | |
|     toOrderedSet(): OrderedSet<V>;
 | |
| 
 | |
|     /**
 | |
|      * Converts this Collection to a List, discarding keys.
 | |
|      *
 | |
|      * This is similar to `List(collection)`, but provided to allow for chained
 | |
|      * expressions. However, when called on `Map` or other keyed collections,
 | |
|      * `collection.toList()` discards the keys and creates a list of only the
 | |
|      * values, whereas `List(collection)` creates a list of entry tuples.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Map, List } = require('immutable')
 | |
|      * var myMap = Map({ a: 'Apple', b: 'Banana' })
 | |
|      * List(myMap) // List [ [ "a", "Apple" ], [ "b", "Banana" ] ]
 | |
|      * myMap.toList() // List [ "Apple", "Banana" ]
 | |
|      * ```
 | |
|      */
 | |
|     toList(): List<V>;
 | |
| 
 | |
|     /**
 | |
|      * Converts this Collection to a Stack, discarding keys. Throws if values
 | |
|      * are not hashable.
 | |
|      *
 | |
|      * Note: This is equivalent to `Stack(this)`, but provided to allow for
 | |
|      * chained expressions.
 | |
|      */
 | |
|     toStack(): Stack<V>;
 | |
| 
 | |
|     // Conversion to Seq
 | |
| 
 | |
|     /**
 | |
|      * Converts this Collection to a Seq of the same kind (indexed,
 | |
|      * keyed, or set).
 | |
|      */
 | |
|     toSeq(): Seq<K, V>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a Seq.Keyed from this Collection where indices are treated as keys.
 | |
|      *
 | |
|      * This is useful if you want to operate on an
 | |
|      * Collection.Indexed and preserve the [index, value] pairs.
 | |
|      *
 | |
|      * The returned Seq will have identical iteration order as
 | |
|      * this Collection.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Seq } = require('immutable')
 | |
|      * const indexedSeq = Seq([ 'A', 'B', 'C' ])
 | |
|      * // Seq [ "A", "B", "C" ]
 | |
|      * indexedSeq.filter(v => v === 'B')
 | |
|      * // Seq [ "B" ]
 | |
|      * const keyedSeq = indexedSeq.toKeyedSeq()
 | |
|      * // Seq { 0: "A", 1: "B", 2: "C" }
 | |
|      * keyedSeq.filter(v => v === 'B')
 | |
|      * // Seq { 1: "B" }
 | |
|      * ```
 | |
|      */
 | |
|     toKeyedSeq(): Seq.Keyed<K, V>;
 | |
| 
 | |
|     /**
 | |
|      * Returns an Seq.Indexed of the values of this Collection, discarding keys.
 | |
|      */
 | |
|     toIndexedSeq(): Seq.Indexed<V>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a Seq.Set of the values of this Collection, discarding keys.
 | |
|      */
 | |
|     toSetSeq(): Seq.Set<V>;
 | |
| 
 | |
|     // Iterators
 | |
| 
 | |
|     /**
 | |
|      * An iterator of this `Collection`'s keys.
 | |
|      *
 | |
|      * Note: this will return an ES6 iterator which does not support
 | |
|      * Immutable.js sequence algorithms. Use `keySeq` instead, if this is
 | |
|      * what you want.
 | |
|      */
 | |
|     keys(): IterableIterator<K>;
 | |
| 
 | |
|     /**
 | |
|      * An iterator of this `Collection`'s values.
 | |
|      *
 | |
|      * Note: this will return an ES6 iterator which does not support
 | |
|      * Immutable.js sequence algorithms. Use `valueSeq` instead, if this is
 | |
|      * what you want.
 | |
|      */
 | |
|     values(): IterableIterator<V>;
 | |
| 
 | |
|     /**
 | |
|      * An iterator of this `Collection`'s entries as `[ key, value ]` tuples.
 | |
|      *
 | |
|      * Note: this will return an ES6 iterator which does not support
 | |
|      * Immutable.js sequence algorithms. Use `entrySeq` instead, if this is
 | |
|      * what you want.
 | |
|      */
 | |
|     entries(): IterableIterator<[K, V]>;
 | |
| 
 | |
|     [Symbol.iterator](): IterableIterator<unknown>;
 | |
| 
 | |
|     // Collections (Seq)
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Seq.Indexed of the keys of this Collection,
 | |
|      * discarding values.
 | |
|      */
 | |
|     keySeq(): Seq.Indexed<K>;
 | |
| 
 | |
|     /**
 | |
|      * Returns an Seq.Indexed of the values of this Collection, discarding keys.
 | |
|      */
 | |
|     valueSeq(): Seq.Indexed<V>;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Seq.Indexed of [key, value] tuples.
 | |
|      */
 | |
|     entrySeq(): Seq.Indexed<[K, V]>;
 | |
| 
 | |
|     // Sequence algorithms
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Collection of the same type with values passed through a
 | |
|      * `mapper` function.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Collection } = require('immutable')
 | |
|      * Collection({ a: 1, b: 2 }).map(x => 10 * x)
 | |
|      * // Seq { "a": 10, "b": 20 }
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `map()` always returns a new instance, even if it produced the same
 | |
|      * value at every step.
 | |
|      */
 | |
|     map<M>(
 | |
|       mapper: (value: V, key: K, iter: this) => M,
 | |
|       context?: unknown
 | |
|     ): Collection<K, M>;
 | |
| 
 | |
|     /**
 | |
|      * Note: used only for sets, which return Collection<M, M> but are otherwise
 | |
|      * identical to normal `map()`.
 | |
|      *
 | |
|      * @ignore
 | |
|      */
 | |
|     map(...args: Array<never>): unknown;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Collection of the same type with only the entries for which
 | |
|      * the `predicate` function returns true.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Map } = require('immutable')
 | |
|      * Map({ a: 1, b: 2, c: 3, d: 4}).filter(x => x % 2 === 0)
 | |
|      * // Map { "b": 2, "d": 4 }
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `filter()` always returns a new instance, even if it results in
 | |
|      * not filtering out any values.
 | |
|      */
 | |
|     filter<F extends V>(
 | |
|       predicate: (value: V, key: K, iter: this) => value is F,
 | |
|       context?: unknown
 | |
|     ): Collection<K, F>;
 | |
|     filter(
 | |
|       predicate: (value: V, key: K, iter: this) => unknown,
 | |
|       context?: unknown
 | |
|     ): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Collection of the same type with only the entries for which
 | |
|      * the `predicate` function returns false.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Map } = require('immutable')
 | |
|      * Map({ a: 1, b: 2, c: 3, d: 4}).filterNot(x => x % 2 === 0)
 | |
|      * // Map { "a": 1, "c": 3 }
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `filterNot()` always returns a new instance, even if it results in
 | |
|      * not filtering out any values.
 | |
|      */
 | |
|     filterNot(
 | |
|       predicate: (value: V, key: K, iter: this) => boolean,
 | |
|       context?: unknown
 | |
|     ): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Collection with the values for which the `predicate`
 | |
|      * function returns false and another for which is returns true.
 | |
|      */
 | |
|     partition<F extends V, C>(
 | |
|       predicate: (this: C, value: V, key: K, iter: this) => value is F,
 | |
|       context?: C
 | |
|     ): [Collection<K, V>, Collection<K, F>];
 | |
|     partition<C>(
 | |
|       predicate: (this: C, value: V, key: K, iter: this) => unknown,
 | |
|       context?: C
 | |
|     ): [this, this];
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Collection of the same type in reverse order.
 | |
|      */
 | |
|     reverse(): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Collection of the same type which includes the same entries,
 | |
|      * stably sorted by using a `comparator`.
 | |
|      *
 | |
|      * If a `comparator` is not provided, a default comparator uses `<` and `>`.
 | |
|      *
 | |
|      * `comparator(valueA, valueB)`:
 | |
|      *
 | |
|      *   * Returns `0` if the elements should not be swapped.
 | |
|      *   * Returns `-1` (or any negative number) if `valueA` comes before `valueB`
 | |
|      *   * Returns `1` (or any positive number) if `valueA` comes after `valueB`
 | |
|      *   * Alternatively, can return a value of the `PairSorting` enum type
 | |
|      *   * Is pure, i.e. it must always return the same value for the same pair
 | |
|      *     of values.
 | |
|      *
 | |
|      * When sorting collections which have no defined order, their ordered
 | |
|      * equivalents will be returned. e.g. `map.sort()` returns OrderedMap.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Map } = require('immutable')
 | |
|      * Map({ "c": 3, "a": 1, "b": 2 }).sort((a, b) => {
 | |
|      *   if (a < b) { return -1; }
 | |
|      *   if (a > b) { return 1; }
 | |
|      *   if (a === b) { return 0; }
 | |
|      * });
 | |
|      * // OrderedMap { "a": 1, "b": 2, "c": 3 }
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `sort()` Always returns a new instance, even if the original was
 | |
|      * already sorted.
 | |
|      *
 | |
|      * Note: This is always an eager operation.
 | |
|      */
 | |
|     sort(comparator?: Comparator<V>): this;
 | |
| 
 | |
|     /**
 | |
|      * Like `sort`, but also accepts a `comparatorValueMapper` which allows for
 | |
|      * sorting by more sophisticated means:
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { Map } = require('immutable')
 | |
|      * const beattles = Map({
 | |
|      *   John: { name: "Lennon" },
 | |
|      *   Paul: { name: "McCartney" },
 | |
|      *   George: { name: "Harrison" },
 | |
|      *   Ringo: { name: "Starr" },
 | |
|      * });
 | |
|      * beattles.sortBy(member => member.name);
 | |
|      * ```
 | |
|      *
 | |
|      * Note: `sortBy()` Always returns a new instance, even if the original was
 | |
|      * already sorted.
 | |
|      *
 | |
|      * Note: This is always an eager operation.
 | |
|      */
 | |
|     sortBy<C>(
 | |
|       comparatorValueMapper: (value: V, key: K, iter: this) => C,
 | |
|       comparator?: Comparator<C>
 | |
|     ): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a `Map` of `Collection`, grouped by the return
 | |
|      * value of the `grouper` function.
 | |
|      *
 | |
|      * Note: This is always an eager operation.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { List, Map } = require('immutable')
 | |
|      * const listOfMaps = List([
 | |
|      *   Map({ v: 0 }),
 | |
|      *   Map({ v: 1 }),
 | |
|      *   Map({ v: 1 }),
 | |
|      *   Map({ v: 0 }),
 | |
|      *   Map({ v: 2 })
 | |
|      * ])
 | |
|      * const groupsOfMaps = listOfMaps.groupBy(x => x.get('v'))
 | |
|      * // Map {
 | |
|      * //   0: List [ Map{ "v": 0 }, Map { "v": 0 } ],
 | |
|      * //   1: List [ Map{ "v": 1 }, Map { "v": 1 } ],
 | |
|      * //   2: List [ Map{ "v": 2 } ],
 | |
|      * // }
 | |
|      * ```
 | |
|      */
 | |
|     groupBy<G>(
 | |
|       grouper: (value: V, key: K, iter: this) => G,
 | |
|       context?: unknown
 | |
|     ): Map<G, this>;
 | |
| 
 | |
|     // Side effects
 | |
| 
 | |
|     /**
 | |
|      * The `sideEffect` is executed for every entry in the Collection.
 | |
|      *
 | |
|      * Unlike `Array#forEach`, if any call of `sideEffect` returns
 | |
|      * `false`, the iteration will stop. Returns the number of entries iterated
 | |
|      * (including the last iteration which returned false).
 | |
|      */
 | |
|     forEach(
 | |
|       sideEffect: (value: V, key: K, iter: this) => unknown,
 | |
|       context?: unknown
 | |
|     ): number;
 | |
| 
 | |
|     // Creating subsets
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Collection of the same type representing a portion of this
 | |
|      * Collection from start up to but not including end.
 | |
|      *
 | |
|      * If begin is negative, it is offset from the end of the Collection. e.g.
 | |
|      * `slice(-2)` returns a Collection of the last two entries. If it is not
 | |
|      * provided the new Collection will begin at the beginning of this Collection.
 | |
|      *
 | |
|      * If end is negative, it is offset from the end of the Collection. e.g.
 | |
|      * `slice(0, -1)` returns a Collection of everything but the last entry. If
 | |
|      * it is not provided, the new Collection will continue through the end of
 | |
|      * this Collection.
 | |
|      *
 | |
|      * If the requested slice is equivalent to the current Collection, then it
 | |
|      * will return itself.
 | |
|      */
 | |
|     slice(begin?: number, end?: number): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Collection of the same type containing all entries except
 | |
|      * the first.
 | |
|      */
 | |
|     rest(): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Collection of the same type containing all entries except
 | |
|      * the last.
 | |
|      */
 | |
|     butLast(): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Collection of the same type which excludes the first `amount`
 | |
|      * entries from this Collection.
 | |
|      */
 | |
|     skip(amount: number): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Collection of the same type which excludes the last `amount`
 | |
|      * entries from this Collection.
 | |
|      */
 | |
|     skipLast(amount: number): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Collection of the same type which includes entries starting
 | |
|      * from when `predicate` first returns false.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { List } = require('immutable')
 | |
|      * List([ 'dog', 'frog', 'cat', 'hat', 'god' ])
 | |
|      *   .skipWhile(x => x.match(/g/))
 | |
|      * // List [ "cat", "hat", "god" ]
 | |
|      * ```
 | |
|      */
 | |
|     skipWhile(
 | |
|       predicate: (value: V, key: K, iter: this) => boolean,
 | |
|       context?: unknown
 | |
|     ): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Collection of the same type which includes entries starting
 | |
|      * from when `predicate` first returns true.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { List } = require('immutable')
 | |
|      * List([ 'dog', 'frog', 'cat', 'hat', 'god' ])
 | |
|      *   .skipUntil(x => x.match(/hat/))
 | |
|      * // List [ "hat", "god" ]
 | |
|      * ```
 | |
|      */
 | |
|     skipUntil(
 | |
|       predicate: (value: V, key: K, iter: this) => boolean,
 | |
|       context?: unknown
 | |
|     ): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Collection of the same type which includes the first `amount`
 | |
|      * entries from this Collection.
 | |
|      */
 | |
|     take(amount: number): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Collection of the same type which includes the last `amount`
 | |
|      * entries from this Collection.
 | |
|      */
 | |
|     takeLast(amount: number): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Collection of the same type which includes entries from this
 | |
|      * Collection as long as the `predicate` returns true.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { List } = require('immutable')
 | |
|      * List([ 'dog', 'frog', 'cat', 'hat', 'god' ])
 | |
|      *   .takeWhile(x => x.match(/o/))
 | |
|      * // List [ "dog", "frog" ]
 | |
|      * ```
 | |
|      */
 | |
|     takeWhile(
 | |
|       predicate: (value: V, key: K, iter: this) => boolean,
 | |
|       context?: unknown
 | |
|     ): this;
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Collection of the same type which includes entries from this
 | |
|      * Collection as long as the `predicate` returns false.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { List } = require('immutable')
 | |
|      * List([ 'dog', 'frog', 'cat', 'hat', 'god' ])
 | |
|      *   .takeUntil(x => x.match(/at/))
 | |
|      * // List [ "dog", "frog" ]
 | |
|      * ```
 | |
|      */
 | |
|     takeUntil(
 | |
|       predicate: (value: V, key: K, iter: this) => boolean,
 | |
|       context?: unknown
 | |
|     ): this;
 | |
| 
 | |
|     // Combination
 | |
| 
 | |
|     /**
 | |
|      * Returns a new Collection of the same type with other values and
 | |
|      * collection-like concatenated to this one.
 | |
|      *
 | |
|      * For Seqs, all entries will be present in the resulting Seq, even if they
 | |
|      * have the same key.
 | |
|      */
 | |
|     concat(
 | |
|       ...valuesOrCollections: Array<unknown>
 | |
|     ): Collection<unknown, unknown>;
 | |
| 
 | |
|     /**
 | |
|      * Flattens nested Collections.
 | |
|      *
 | |
|      * Will deeply flatten the Collection by default, returning a Collection of the
 | |
|      * same type, but a `depth` can be provided in the form of a number or
 | |
|      * boolean (where true means to shallowly flatten one level). A depth of 0
 | |
|      * (or shallow: false) will deeply flatten.
 | |
|      *
 | |
|      * Flattens only others Collection, not Arrays or Objects.
 | |
|      *
 | |
|      * Note: `flatten(true)` operates on Collection<unknown, Collection<K, V>> and
 | |
|      * returns Collection<K, V>
 | |
|      */
 | |
|     flatten(depth?: number): Collection<unknown, unknown>;
 | |
|     // tslint:disable-next-line unified-signatures
 | |
|     flatten(shallow?: boolean): Collection<unknown, unknown>;
 | |
| 
 | |
|     /**
 | |
|      * Flat-maps the Collection, returning a Collection of the same type.
 | |
|      *
 | |
|      * Similar to `collection.map(...).flatten(true)`.
 | |
|      */
 | |
|     flatMap<M>(
 | |
|       mapper: (value: V, key: K, iter: this) => Iterable<M>,
 | |
|       context?: unknown
 | |
|     ): Collection<K, M>;
 | |
| 
 | |
|     /**
 | |
|      * Flat-maps the Collection, returning a Collection of the same type.
 | |
|      *
 | |
|      * Similar to `collection.map(...).flatten(true)`.
 | |
|      * Used for Dictionaries only.
 | |
|      */
 | |
|     flatMap<KM, VM>(
 | |
|       mapper: (value: V, key: K, iter: this) => Iterable<[KM, VM]>,
 | |
|       context?: unknown
 | |
|     ): Collection<KM, VM>;
 | |
| 
 | |
|     // Reducing a value
 | |
| 
 | |
|     /**
 | |
|      * Reduces the Collection to a value by calling the `reducer` for every entry
 | |
|      * in the Collection and passing along the reduced value.
 | |
|      *
 | |
|      * If `initialReduction` is not provided, the first item in the
 | |
|      * Collection will be used.
 | |
|      *
 | |
|      * @see `Array#reduce`.
 | |
|      */
 | |
|     reduce<R>(
 | |
|       reducer: (reduction: R, value: V, key: K, iter: this) => R,
 | |
|       initialReduction: R,
 | |
|       context?: unknown
 | |
|     ): R;
 | |
|     reduce<R>(
 | |
|       reducer: (reduction: V | R, value: V, key: K, iter: this) => R
 | |
|     ): R;
 | |
| 
 | |
|     /**
 | |
|      * Reduces the Collection in reverse (from the right side).
 | |
|      *
 | |
|      * Note: Similar to this.reverse().reduce(), and provided for parity
 | |
|      * with `Array#reduceRight`.
 | |
|      */
 | |
|     reduceRight<R>(
 | |
|       reducer: (reduction: R, value: V, key: K, iter: this) => R,
 | |
|       initialReduction: R,
 | |
|       context?: unknown
 | |
|     ): R;
 | |
|     reduceRight<R>(
 | |
|       reducer: (reduction: V | R, value: V, key: K, iter: this) => R
 | |
|     ): R;
 | |
| 
 | |
|     /**
 | |
|      * True if `predicate` returns true for all entries in the Collection.
 | |
|      */
 | |
|     every(
 | |
|       predicate: (value: V, key: K, iter: this) => boolean,
 | |
|       context?: unknown
 | |
|     ): boolean;
 | |
| 
 | |
|     /**
 | |
|      * True if `predicate` returns true for any entry in the Collection.
 | |
|      */
 | |
|     some(
 | |
|       predicate: (value: V, key: K, iter: this) => boolean,
 | |
|       context?: unknown
 | |
|     ): boolean;
 | |
| 
 | |
|     /**
 | |
|      * Joins values together as a string, inserting a separator between each.
 | |
|      * The default separator is `","`.
 | |
|      */
 | |
|     join(separator?: string): string;
 | |
| 
 | |
|     /**
 | |
|      * Returns true if this Collection includes no values.
 | |
|      *
 | |
|      * For some lazy `Seq`, `isEmpty` might need to iterate to determine
 | |
|      * emptiness. At most one iteration will occur.
 | |
|      */
 | |
|     isEmpty(): boolean;
 | |
| 
 | |
|     /**
 | |
|      * Returns the size of this Collection.
 | |
|      *
 | |
|      * Regardless of if this Collection can describe its size lazily (some Seqs
 | |
|      * cannot), this method will always return the correct size. E.g. it
 | |
|      * evaluates a lazy `Seq` if necessary.
 | |
|      *
 | |
|      * If `predicate` is provided, then this returns the count of entries in the
 | |
|      * Collection for which the `predicate` returns true.
 | |
|      */
 | |
|     count(): number;
 | |
|     count(
 | |
|       predicate: (value: V, key: K, iter: this) => boolean,
 | |
|       context?: unknown
 | |
|     ): number;
 | |
| 
 | |
|     /**
 | |
|      * Returns a `Seq.Keyed` of counts, grouped by the return value of
 | |
|      * the `grouper` function.
 | |
|      *
 | |
|      * Note: This is not a lazy operation.
 | |
|      */
 | |
|     countBy<G>(
 | |
|       grouper: (value: V, key: K, iter: this) => G,
 | |
|       context?: unknown
 | |
|     ): Map<G, number>;
 | |
| 
 | |
|     // Search for value
 | |
| 
 | |
|     /**
 | |
|      * Returns the first value for which the `predicate` returns true.
 | |
|      */
 | |
|     find(
 | |
|       predicate: (value: V, key: K, iter: this) => boolean,
 | |
|       context?: unknown,
 | |
|       notSetValue?: V
 | |
|     ): V | undefined;
 | |
| 
 | |
|     /**
 | |
|      * Returns the last value for which the `predicate` returns true.
 | |
|      *
 | |
|      * Note: `predicate` will be called for each entry in reverse.
 | |
|      */
 | |
|     findLast(
 | |
|       predicate: (value: V, key: K, iter: this) => boolean,
 | |
|       context?: unknown,
 | |
|       notSetValue?: V
 | |
|     ): V | undefined;
 | |
| 
 | |
|     /**
 | |
|      * Returns the first [key, value] entry for which the `predicate` returns true.
 | |
|      */
 | |
|     findEntry(
 | |
|       predicate: (value: V, key: K, iter: this) => boolean,
 | |
|       context?: unknown,
 | |
|       notSetValue?: V
 | |
|     ): [K, V] | undefined;
 | |
| 
 | |
|     /**
 | |
|      * Returns the last [key, value] entry for which the `predicate`
 | |
|      * returns true.
 | |
|      *
 | |
|      * Note: `predicate` will be called for each entry in reverse.
 | |
|      */
 | |
|     findLastEntry(
 | |
|       predicate: (value: V, key: K, iter: this) => boolean,
 | |
|       context?: unknown,
 | |
|       notSetValue?: V
 | |
|     ): [K, V] | undefined;
 | |
| 
 | |
|     /**
 | |
|      * Returns the key for which the `predicate` returns true.
 | |
|      */
 | |
|     findKey(
 | |
|       predicate: (value: V, key: K, iter: this) => boolean,
 | |
|       context?: unknown
 | |
|     ): K | undefined;
 | |
| 
 | |
|     /**
 | |
|      * Returns the last key for which the `predicate` returns true.
 | |
|      *
 | |
|      * Note: `predicate` will be called for each entry in reverse.
 | |
|      */
 | |
|     findLastKey(
 | |
|       predicate: (value: V, key: K, iter: this) => boolean,
 | |
|       context?: unknown
 | |
|     ): K | undefined;
 | |
| 
 | |
|     /**
 | |
|      * Returns the key associated with the search value, or undefined.
 | |
|      */
 | |
|     keyOf(searchValue: V): K | undefined;
 | |
| 
 | |
|     /**
 | |
|      * Returns the last key associated with the search value, or undefined.
 | |
|      */
 | |
|     lastKeyOf(searchValue: V): K | undefined;
 | |
| 
 | |
|     /**
 | |
|      * Returns the maximum value in this collection. If any values are
 | |
|      * comparatively equivalent, the first one found will be returned.
 | |
|      *
 | |
|      * The `comparator` is used in the same way as `Collection#sort`. If it is not
 | |
|      * provided, the default comparator is `>`.
 | |
|      *
 | |
|      * When two values are considered equivalent, the first encountered will be
 | |
|      * returned. Otherwise, `max` will operate independent of the order of input
 | |
|      * as long as the comparator is commutative. The default comparator `>` is
 | |
|      * commutative *only* when types do not differ.
 | |
|      *
 | |
|      * If `comparator` returns 0 and either value is NaN, undefined, or null,
 | |
|      * that value will be returned.
 | |
|      */
 | |
|     max(comparator?: Comparator<V>): V | undefined;
 | |
| 
 | |
|     /**
 | |
|      * Like `max`, but also accepts a `comparatorValueMapper` which allows for
 | |
|      * comparing by more sophisticated means:
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { List, } = require('immutable');
 | |
|      * const l = List([
 | |
|      *   { name: 'Bob', avgHit: 1 },
 | |
|      *   { name: 'Max', avgHit: 3 },
 | |
|      *   { name: 'Lili', avgHit: 2 } ,
 | |
|      * ]);
 | |
|      * l.maxBy(i => i.avgHit); // will output { name: 'Max', avgHit: 3 }
 | |
|      * ```
 | |
|      */
 | |
|     maxBy<C>(
 | |
|       comparatorValueMapper: (value: V, key: K, iter: this) => C,
 | |
|       comparator?: Comparator<C>
 | |
|     ): V | undefined;
 | |
| 
 | |
|     /**
 | |
|      * Returns the minimum value in this collection. If any values are
 | |
|      * comparatively equivalent, the first one found will be returned.
 | |
|      *
 | |
|      * The `comparator` is used in the same way as `Collection#sort`. If it is not
 | |
|      * provided, the default comparator is `<`.
 | |
|      *
 | |
|      * When two values are considered equivalent, the first encountered will be
 | |
|      * returned. Otherwise, `min` will operate independent of the order of input
 | |
|      * as long as the comparator is commutative. The default comparator `<` is
 | |
|      * commutative *only* when types do not differ.
 | |
|      *
 | |
|      * If `comparator` returns 0 and either value is NaN, undefined, or null,
 | |
|      * that value will be returned.
 | |
|      */
 | |
|     min(comparator?: Comparator<V>): V | undefined;
 | |
| 
 | |
|     /**
 | |
|      * Like `min`, but also accepts a `comparatorValueMapper` which allows for
 | |
|      * comparing by more sophisticated means:
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { List, } = require('immutable');
 | |
|      * const l = List([
 | |
|      *   { name: 'Bob', avgHit: 1 },
 | |
|      *   { name: 'Max', avgHit: 3 },
 | |
|      *   { name: 'Lili', avgHit: 2 } ,
 | |
|      * ]);
 | |
|      * l.minBy(i => i.avgHit); // will output { name: 'Bob', avgHit: 1 }
 | |
|      * ```
 | |
|      */
 | |
|     minBy<C>(
 | |
|       comparatorValueMapper: (value: V, key: K, iter: this) => C,
 | |
|       comparator?: Comparator<C>
 | |
|     ): V | undefined;
 | |
| 
 | |
|     // Comparison
 | |
| 
 | |
|     /**
 | |
|      * True if `iter` includes every value in this Collection.
 | |
|      */
 | |
|     isSubset(iter: Iterable<V>): boolean;
 | |
| 
 | |
|     /**
 | |
|      * True if this Collection includes every value in `iter`.
 | |
|      */
 | |
|     isSuperset(iter: Iterable<V>): boolean;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * The interface to fulfill to qualify as a Value Object.
 | |
|    */
 | |
|   interface ValueObject {
 | |
|     /**
 | |
|      * True if this and the other Collection have value equality, as defined
 | |
|      * by `Immutable.is()`.
 | |
|      *
 | |
|      * Note: This is equivalent to `Immutable.is(this, other)`, but provided to
 | |
|      * allow for chained expressions.
 | |
|      */
 | |
|     equals(other: unknown): boolean;
 | |
| 
 | |
|     /**
 | |
|      * Computes and returns the hashed identity for this Collection.
 | |
|      *
 | |
|      * The `hashCode` of a Collection is used to determine potential equality,
 | |
|      * and is used when adding this to a `Set` or as a key in a `Map`, enabling
 | |
|      * lookup via a different instance.
 | |
|      *
 | |
|      * <!-- runkit:activate -->
 | |
|      * ```js
 | |
|      * const { List, Set } = require('immutable');
 | |
|      * const a = List([ 1, 2, 3 ]);
 | |
|      * const b = List([ 1, 2, 3 ]);
 | |
|      * assert.notStrictEqual(a, b); // different instances
 | |
|      * const set = Set([ a ]);
 | |
|      * assert.equal(set.has(b), true);
 | |
|      * ```
 | |
|      *
 | |
|      * Note: hashCode() MUST return a Uint32 number. The easiest way to
 | |
|      * guarantee this is to return `myHash | 0` from a custom implementation.
 | |
|      *
 | |
|      * If two values have the same `hashCode`, they are [not guaranteed
 | |
|      * to be equal][Hash Collision]. If two values have different `hashCode`s,
 | |
|      * they must not be equal.
 | |
|      *
 | |
|      * Note: `hashCode()` is not guaranteed to always be called before
 | |
|      * `equals()`. Most but not all Immutable.js collections use hash codes to
 | |
|      * organize their internal data structures, while all Immutable.js
 | |
|      * collections use equality during lookups.
 | |
|      *
 | |
|      * [Hash Collision]: https://en.wikipedia.org/wiki/Collision_(computer_science)
 | |
|      */
 | |
|     hashCode(): number;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Deeply converts plain JS objects and arrays to Immutable Maps and Lists.
 | |
|    *
 | |
|    * `fromJS` will convert Arrays and [array-like objects][2] to a List, and
 | |
|    * plain objects (without a custom prototype) to a Map. [Iterable objects][3]
 | |
|    * may be converted to List, Map, or Set.
 | |
|    *
 | |
|    * If a `reviver` is optionally provided, it will be called with every
 | |
|    * collection as a Seq (beginning with the most nested collections
 | |
|    * and proceeding to the top-level collection itself), along with the key
 | |
|    * referring to each collection and the parent JS object provided as `this`.
 | |
|    * For the top level, object, the key will be `""`. This `reviver` is expected
 | |
|    * to return a new Immutable Collection, allowing for custom conversions from
 | |
|    * deep JS objects. Finally, a `path` is provided which is the sequence of
 | |
|    * keys to this value from the starting value.
 | |
|    *
 | |
|    * `reviver` acts similarly to the [same parameter in `JSON.parse`][1].
 | |
|    *
 | |
|    * If `reviver` is not provided, the default behavior will convert Objects
 | |
|    * into Maps and Arrays into Lists like so:
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { fromJS, isKeyed } = require('immutable')
 | |
|    * function (key, value) {
 | |
|    *   return isKeyed(value) ? value.toMap() : value.toList()
 | |
|    * }
 | |
|    * ```
 | |
|    *
 | |
|    * Accordingly, this example converts native JS data to OrderedMap and List:
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { fromJS, isKeyed } = require('immutable')
 | |
|    * fromJS({ a: {b: [10, 20, 30]}, c: 40}, function (key, value, path) {
 | |
|    *   console.log(key, value, path)
 | |
|    *   return isKeyed(value) ? value.toOrderedMap() : value.toList()
 | |
|    * })
 | |
|    *
 | |
|    * > "b", [ 10, 20, 30 ], [ "a", "b" ]
 | |
|    * > "a", {b: [10, 20, 30]}, [ "a" ]
 | |
|    * > "", {a: {b: [10, 20, 30]}, c: 40}, []
 | |
|    * ```
 | |
|    *
 | |
|    * Keep in mind, when using JS objects to construct Immutable Maps, that
 | |
|    * JavaScript Object properties are always strings, even if written in a
 | |
|    * quote-less shorthand, while Immutable Maps accept keys of any type.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { Map } = require('immutable')
 | |
|    * let obj = { 1: "one" };
 | |
|    * Object.keys(obj); // [ "1" ]
 | |
|    * assert.equal(obj["1"], obj[1]); // "one" === "one"
 | |
|    *
 | |
|    * let map = Map(obj);
 | |
|    * assert.notEqual(map.get("1"), map.get(1)); // "one" !== undefined
 | |
|    * ```
 | |
|    *
 | |
|    * Property access for JavaScript Objects first converts the key to a string,
 | |
|    * but since Immutable Map keys can be of any type the argument to `get()` is
 | |
|    * not altered.
 | |
|    *
 | |
|    * [1]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse#Example.3A_Using_the_reviver_parameter
 | |
|    *      "Using the reviver parameter"
 | |
|    * [2]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Indexed_collections#working_with_array-like_objects
 | |
|    *      "Working with array-like objects"
 | |
|    * [3]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols#the_iterable_protocol
 | |
|    *      "The iterable protocol"
 | |
|    */
 | |
|   function fromJS<JSValue>(
 | |
|     jsValue: JSValue,
 | |
|     reviver?: undefined
 | |
|   ): FromJS<JSValue>;
 | |
|   function fromJS(
 | |
|     jsValue: unknown,
 | |
|     reviver?: (
 | |
|       key: string | number,
 | |
|       sequence: Collection.Keyed<string, unknown> | Collection.Indexed<unknown>,
 | |
|       path?: Array<string | number>
 | |
|     ) => unknown
 | |
|   ): Collection<unknown, unknown>;
 | |
| 
 | |
|   type FromJS<JSValue> = JSValue extends FromJSNoTransform
 | |
|     ? JSValue
 | |
|     : JSValue extends Array<any>
 | |
|     ? FromJSArray<JSValue>
 | |
|     : JSValue extends {}
 | |
|     ? FromJSObject<JSValue>
 | |
|     : any;
 | |
| 
 | |
|   type FromJSNoTransform =
 | |
|     | Collection<any, any>
 | |
|     | number
 | |
|     | string
 | |
|     | null
 | |
|     | undefined;
 | |
| 
 | |
|   type FromJSArray<JSValue> = JSValue extends Array<infer T>
 | |
|     ? List<FromJS<T>>
 | |
|     : never;
 | |
| 
 | |
|   type FromJSObject<JSValue> = JSValue extends {}
 | |
|     ? Map<keyof JSValue, FromJS<JSValue[keyof JSValue]>>
 | |
|     : never;
 | |
| 
 | |
|   /**
 | |
|    * Value equality check with semantics similar to `Object.is`, but treats
 | |
|    * Immutable `Collection`s as values, equal if the second `Collection` includes
 | |
|    * equivalent values.
 | |
|    *
 | |
|    * It's used throughout Immutable when checking for equality, including `Map`
 | |
|    * key equality and `Set` membership.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { Map, is } = require('immutable')
 | |
|    * const map1 = Map({ a: 1, b: 1, c: 1 })
 | |
|    * const map2 = Map({ a: 1, b: 1, c: 1 })
 | |
|    * assert.equal(map1 !== map2, true)
 | |
|    * assert.equal(Object.is(map1, map2), false)
 | |
|    * assert.equal(is(map1, map2), true)
 | |
|    * ```
 | |
|    *
 | |
|    * `is()` compares primitive types like strings and numbers, Immutable.js
 | |
|    * collections like `Map` and `List`, but also any custom object which
 | |
|    * implements `ValueObject` by providing `equals()` and `hashCode()` methods.
 | |
|    *
 | |
|    * Note: Unlike `Object.is`, `Immutable.is` assumes `0` and `-0` are the same
 | |
|    * value, matching the behavior of ES6 Map key equality.
 | |
|    */
 | |
|   function is(first: unknown, second: unknown): boolean;
 | |
| 
 | |
|   /**
 | |
|    * The `hash()` function is an important part of how Immutable determines if
 | |
|    * two values are equivalent and is used to determine how to store those
 | |
|    * values. Provided with any value, `hash()` will return a 31-bit integer.
 | |
|    *
 | |
|    * When designing Objects which may be equal, it's important that when a
 | |
|    * `.equals()` method returns true, that both values `.hashCode()` method
 | |
|    * return the same value. `hash()` may be used to produce those values.
 | |
|    *
 | |
|    * For non-Immutable Objects that do not provide a `.hashCode()` functions
 | |
|    * (including plain Objects, plain Arrays, Date objects, etc), a unique hash
 | |
|    * value will be created for each *instance*. That is, the create hash
 | |
|    * represents referential equality, and not value equality for Objects. This
 | |
|    * ensures that if that Object is mutated over time that its hash code will
 | |
|    * remain consistent, allowing Objects to be used as keys and values in
 | |
|    * Immutable.js collections.
 | |
|    *
 | |
|    * Note that `hash()` attempts to balance between speed and avoiding
 | |
|    * collisions, however it makes no attempt to produce secure hashes.
 | |
|    *
 | |
|    * *New in Version 4.0*
 | |
|    */
 | |
|   function hash(value: unknown): number;
 | |
| 
 | |
|   /**
 | |
|    * True if `maybeImmutable` is an Immutable Collection or Record.
 | |
|    *
 | |
|    * Note: Still returns true even if the collections is within a `withMutations()`.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { isImmutable, Map, List, Stack } = require('immutable');
 | |
|    * isImmutable([]); // false
 | |
|    * isImmutable({}); // false
 | |
|    * isImmutable(Map()); // true
 | |
|    * isImmutable(List()); // true
 | |
|    * isImmutable(Stack()); // true
 | |
|    * isImmutable(Map().asMutable()); // true
 | |
|    * ```
 | |
|    */
 | |
|   function isImmutable(
 | |
|     maybeImmutable: unknown
 | |
|   ): maybeImmutable is Collection<unknown, unknown>;
 | |
| 
 | |
|   /**
 | |
|    * True if `maybeCollection` is a Collection, or any of its subclasses.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { isCollection, Map, List, Stack } = require('immutable');
 | |
|    * isCollection([]); // false
 | |
|    * isCollection({}); // false
 | |
|    * isCollection(Map()); // true
 | |
|    * isCollection(List()); // true
 | |
|    * isCollection(Stack()); // true
 | |
|    * ```
 | |
|    */
 | |
|   function isCollection(
 | |
|     maybeCollection: unknown
 | |
|   ): maybeCollection is Collection<unknown, unknown>;
 | |
| 
 | |
|   /**
 | |
|    * True if `maybeKeyed` is a Collection.Keyed, or any of its subclasses.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { isKeyed, Map, List, Stack } = require('immutable');
 | |
|    * isKeyed([]); // false
 | |
|    * isKeyed({}); // false
 | |
|    * isKeyed(Map()); // true
 | |
|    * isKeyed(List()); // false
 | |
|    * isKeyed(Stack()); // false
 | |
|    * ```
 | |
|    */
 | |
|   function isKeyed(
 | |
|     maybeKeyed: unknown
 | |
|   ): maybeKeyed is Collection.Keyed<unknown, unknown>;
 | |
| 
 | |
|   /**
 | |
|    * True if `maybeIndexed` is a Collection.Indexed, or any of its subclasses.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { isIndexed, Map, List, Stack, Set } = require('immutable');
 | |
|    * isIndexed([]); // false
 | |
|    * isIndexed({}); // false
 | |
|    * isIndexed(Map()); // false
 | |
|    * isIndexed(List()); // true
 | |
|    * isIndexed(Stack()); // true
 | |
|    * isIndexed(Set()); // false
 | |
|    * ```
 | |
|    */
 | |
|   function isIndexed(
 | |
|     maybeIndexed: unknown
 | |
|   ): maybeIndexed is Collection.Indexed<unknown>;
 | |
| 
 | |
|   /**
 | |
|    * True if `maybeAssociative` is either a Keyed or Indexed Collection.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { isAssociative, Map, List, Stack, Set } = require('immutable');
 | |
|    * isAssociative([]); // false
 | |
|    * isAssociative({}); // false
 | |
|    * isAssociative(Map()); // true
 | |
|    * isAssociative(List()); // true
 | |
|    * isAssociative(Stack()); // true
 | |
|    * isAssociative(Set()); // false
 | |
|    * ```
 | |
|    */
 | |
|   function isAssociative(
 | |
|     maybeAssociative: unknown
 | |
|   ): maybeAssociative is
 | |
|     | Collection.Keyed<unknown, unknown>
 | |
|     | Collection.Indexed<unknown>;
 | |
| 
 | |
|   /**
 | |
|    * True if `maybeOrdered` is a Collection where iteration order is well
 | |
|    * defined. True for Collection.Indexed as well as OrderedMap and OrderedSet.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { isOrdered, Map, OrderedMap, List, Set } = require('immutable');
 | |
|    * isOrdered([]); // false
 | |
|    * isOrdered({}); // false
 | |
|    * isOrdered(Map()); // false
 | |
|    * isOrdered(OrderedMap()); // true
 | |
|    * isOrdered(List()); // true
 | |
|    * isOrdered(Set()); // false
 | |
|    * ```
 | |
|    */
 | |
|   function isOrdered(maybeOrdered: unknown): boolean;
 | |
| 
 | |
|   /**
 | |
|    * True if `maybeValue` is a JavaScript Object which has *both* `equals()`
 | |
|    * and `hashCode()` methods.
 | |
|    *
 | |
|    * Any two instances of *value objects* can be compared for value equality with
 | |
|    * `Immutable.is()` and can be used as keys in a `Map` or members in a `Set`.
 | |
|    */
 | |
|   function isValueObject(maybeValue: unknown): maybeValue is ValueObject;
 | |
| 
 | |
|   /**
 | |
|    * True if `maybeSeq` is a Seq.
 | |
|    */
 | |
|   function isSeq(
 | |
|     maybeSeq: unknown
 | |
|   ): maybeSeq is
 | |
|     | Seq.Indexed<unknown>
 | |
|     | Seq.Keyed<unknown, unknown>
 | |
|     | Seq.Set<unknown>;
 | |
| 
 | |
|   /**
 | |
|    * True if `maybeList` is a List.
 | |
|    */
 | |
|   function isList(maybeList: unknown): maybeList is List<unknown>;
 | |
| 
 | |
|   /**
 | |
|    * True if `maybeMap` is a Map.
 | |
|    *
 | |
|    * Also true for OrderedMaps.
 | |
|    */
 | |
|   function isMap(maybeMap: unknown): maybeMap is Map<unknown, unknown>;
 | |
| 
 | |
|   /**
 | |
|    * True if `maybeOrderedMap` is an OrderedMap.
 | |
|    */
 | |
|   function isOrderedMap(
 | |
|     maybeOrderedMap: unknown
 | |
|   ): maybeOrderedMap is OrderedMap<unknown, unknown>;
 | |
| 
 | |
|   /**
 | |
|    * True if `maybeStack` is a Stack.
 | |
|    */
 | |
|   function isStack(maybeStack: unknown): maybeStack is Stack<unknown>;
 | |
| 
 | |
|   /**
 | |
|    * True if `maybeSet` is a Set.
 | |
|    *
 | |
|    * Also true for OrderedSets.
 | |
|    */
 | |
|   function isSet(maybeSet: unknown): maybeSet is Set<unknown>;
 | |
| 
 | |
|   /**
 | |
|    * True if `maybeOrderedSet` is an OrderedSet.
 | |
|    */
 | |
|   function isOrderedSet(
 | |
|     maybeOrderedSet: unknown
 | |
|   ): maybeOrderedSet is OrderedSet<unknown>;
 | |
| 
 | |
|   /**
 | |
|    * True if `maybeRecord` is a Record.
 | |
|    */
 | |
|   function isRecord(maybeRecord: unknown): maybeRecord is Record<{}>;
 | |
| 
 | |
|   /**
 | |
|    * Returns the value within the provided collection associated with the
 | |
|    * provided key, or notSetValue if the key is not defined in the collection.
 | |
|    *
 | |
|    * A functional alternative to `collection.get(key)` which will also work on
 | |
|    * plain Objects and Arrays as an alternative for `collection[key]`.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { get } = require('immutable')
 | |
|    * get([ 'dog', 'frog', 'cat' ], 2) // 'frog'
 | |
|    * get({ x: 123, y: 456 }, 'x') // 123
 | |
|    * get({ x: 123, y: 456 }, 'z', 'ifNotSet') // 'ifNotSet'
 | |
|    * ```
 | |
|    */
 | |
|   function get<K, V>(collection: Collection<K, V>, key: K): V | undefined;
 | |
|   function get<K, V, NSV>(
 | |
|     collection: Collection<K, V>,
 | |
|     key: K,
 | |
|     notSetValue: NSV
 | |
|   ): V | NSV;
 | |
|   function get<TProps extends object, K extends keyof TProps>(
 | |
|     record: Record<TProps>,
 | |
|     key: K,
 | |
|     notSetValue: unknown
 | |
|   ): TProps[K];
 | |
|   function get<V>(collection: Array<V>, key: number): V | undefined;
 | |
|   function get<V, NSV>(
 | |
|     collection: Array<V>,
 | |
|     key: number,
 | |
|     notSetValue: NSV
 | |
|   ): V | NSV;
 | |
|   function get<C extends object, K extends keyof C>(
 | |
|     object: C,
 | |
|     key: K,
 | |
|     notSetValue: unknown
 | |
|   ): C[K];
 | |
|   function get<V>(collection: { [key: string]: V }, key: string): V | undefined;
 | |
|   function get<V, NSV>(
 | |
|     collection: { [key: string]: V },
 | |
|     key: string,
 | |
|     notSetValue: NSV
 | |
|   ): V | NSV;
 | |
| 
 | |
|   /**
 | |
|    * Returns true if the key is defined in the provided collection.
 | |
|    *
 | |
|    * A functional alternative to `collection.has(key)` which will also work with
 | |
|    * plain Objects and Arrays as an alternative for
 | |
|    * `collection.hasOwnProperty(key)`.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { has } = require('immutable')
 | |
|    * has([ 'dog', 'frog', 'cat' ], 2) // true
 | |
|    * has([ 'dog', 'frog', 'cat' ], 5) // false
 | |
|    * has({ x: 123, y: 456 }, 'x') // true
 | |
|    * has({ x: 123, y: 456 }, 'z') // false
 | |
|    * ```
 | |
|    */
 | |
|   function has(collection: object, key: unknown): boolean;
 | |
| 
 | |
|   /**
 | |
|    * Returns a copy of the collection with the value at key removed.
 | |
|    *
 | |
|    * A functional alternative to `collection.remove(key)` which will also work
 | |
|    * with plain Objects and Arrays as an alternative for
 | |
|    * `delete collectionCopy[key]`.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { remove } = require('immutable')
 | |
|    * const originalArray = [ 'dog', 'frog', 'cat' ]
 | |
|    * remove(originalArray, 1) // [ 'dog', 'cat' ]
 | |
|    * console.log(originalArray) // [ 'dog', 'frog', 'cat' ]
 | |
|    * const originalObject = { x: 123, y: 456 }
 | |
|    * remove(originalObject, 'x') // { y: 456 }
 | |
|    * console.log(originalObject) // { x: 123, y: 456 }
 | |
|    * ```
 | |
|    */
 | |
|   function remove<K, C extends Collection<K, unknown>>(
 | |
|     collection: C,
 | |
|     key: K
 | |
|   ): C;
 | |
|   function remove<
 | |
|     TProps extends object,
 | |
|     C extends Record<TProps>,
 | |
|     K extends keyof TProps
 | |
|   >(collection: C, key: K): C;
 | |
|   function remove<C extends Array<unknown>>(collection: C, key: number): C;
 | |
|   function remove<C, K extends keyof C>(collection: C, key: K): C;
 | |
|   function remove<C extends { [key: string]: unknown }, K extends keyof C>(
 | |
|     collection: C,
 | |
|     key: K
 | |
|   ): C;
 | |
| 
 | |
|   /**
 | |
|    * Returns a copy of the collection with the value at key set to the provided
 | |
|    * value.
 | |
|    *
 | |
|    * A functional alternative to `collection.set(key, value)` which will also
 | |
|    * work with plain Objects and Arrays as an alternative for
 | |
|    * `collectionCopy[key] = value`.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { set } = require('immutable')
 | |
|    * const originalArray = [ 'dog', 'frog', 'cat' ]
 | |
|    * set(originalArray, 1, 'cow') // [ 'dog', 'cow', 'cat' ]
 | |
|    * console.log(originalArray) // [ 'dog', 'frog', 'cat' ]
 | |
|    * const originalObject = { x: 123, y: 456 }
 | |
|    * set(originalObject, 'x', 789) // { x: 789, y: 456 }
 | |
|    * console.log(originalObject) // { x: 123, y: 456 }
 | |
|    * ```
 | |
|    */
 | |
|   function set<K, V, C extends Collection<K, V>>(
 | |
|     collection: C,
 | |
|     key: K,
 | |
|     value: V
 | |
|   ): C;
 | |
|   function set<
 | |
|     TProps extends object,
 | |
|     C extends Record<TProps>,
 | |
|     K extends keyof TProps
 | |
|   >(record: C, key: K, value: TProps[K]): C;
 | |
|   function set<V, C extends Array<V>>(collection: C, key: number, value: V): C;
 | |
|   function set<C, K extends keyof C>(object: C, key: K, value: C[K]): C;
 | |
|   function set<V, C extends { [key: string]: V }>(
 | |
|     collection: C,
 | |
|     key: string,
 | |
|     value: V
 | |
|   ): C;
 | |
| 
 | |
|   /**
 | |
|    * Returns a copy of the collection with the value at key set to the result of
 | |
|    * providing the existing value to the updating function.
 | |
|    *
 | |
|    * A functional alternative to `collection.update(key, fn)` which will also
 | |
|    * work with plain Objects and Arrays as an alternative for
 | |
|    * `collectionCopy[key] = fn(collection[key])`.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { update } = require('immutable')
 | |
|    * const originalArray = [ 'dog', 'frog', 'cat' ]
 | |
|    * update(originalArray, 1, val => val.toUpperCase()) // [ 'dog', 'FROG', 'cat' ]
 | |
|    * console.log(originalArray) // [ 'dog', 'frog', 'cat' ]
 | |
|    * const originalObject = { x: 123, y: 456 }
 | |
|    * update(originalObject, 'x', val => val * 6) // { x: 738, y: 456 }
 | |
|    * console.log(originalObject) // { x: 123, y: 456 }
 | |
|    * ```
 | |
|    */
 | |
|   function update<K, V, C extends Collection<K, V>>(
 | |
|     collection: C,
 | |
|     key: K,
 | |
|     updater: (value: V | undefined) => V | undefined
 | |
|   ): C;
 | |
|   function update<K, V, C extends Collection<K, V>, NSV>(
 | |
|     collection: C,
 | |
|     key: K,
 | |
|     notSetValue: NSV,
 | |
|     updater: (value: V | NSV) => V
 | |
|   ): C;
 | |
|   function update<
 | |
|     TProps extends object,
 | |
|     C extends Record<TProps>,
 | |
|     K extends keyof TProps
 | |
|   >(record: C, key: K, updater: (value: TProps[K]) => TProps[K]): C;
 | |
|   function update<
 | |
|     TProps extends object,
 | |
|     C extends Record<TProps>,
 | |
|     K extends keyof TProps,
 | |
|     NSV
 | |
|   >(
 | |
|     record: C,
 | |
|     key: K,
 | |
|     notSetValue: NSV,
 | |
|     updater: (value: TProps[K] | NSV) => TProps[K]
 | |
|   ): C;
 | |
|   function update<V>(
 | |
|     collection: Array<V>,
 | |
|     key: number,
 | |
|     updater: (value: V | undefined) => V | undefined
 | |
|   ): Array<V>;
 | |
|   function update<V, NSV>(
 | |
|     collection: Array<V>,
 | |
|     key: number,
 | |
|     notSetValue: NSV,
 | |
|     updater: (value: V | NSV) => V
 | |
|   ): Array<V>;
 | |
|   function update<C, K extends keyof C>(
 | |
|     object: C,
 | |
|     key: K,
 | |
|     updater: (value: C[K]) => C[K]
 | |
|   ): C;
 | |
|   function update<C, K extends keyof C, NSV>(
 | |
|     object: C,
 | |
|     key: K,
 | |
|     notSetValue: NSV,
 | |
|     updater: (value: C[K] | NSV) => C[K]
 | |
|   ): C;
 | |
|   function update<V, C extends { [key: string]: V }, K extends keyof C>(
 | |
|     collection: C,
 | |
|     key: K,
 | |
|     updater: (value: V) => V
 | |
|   ): { [key: string]: V };
 | |
|   function update<V, C extends { [key: string]: V }, K extends keyof C, NSV>(
 | |
|     collection: C,
 | |
|     key: K,
 | |
|     notSetValue: NSV,
 | |
|     updater: (value: V | NSV) => V
 | |
|   ): { [key: string]: V };
 | |
| 
 | |
|   /**
 | |
|    * Returns the value at the provided key path starting at the provided
 | |
|    * collection, or notSetValue if the key path is not defined.
 | |
|    *
 | |
|    * A functional alternative to `collection.getIn(keypath)` which will also
 | |
|    * work with plain Objects and Arrays.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { getIn } = require('immutable')
 | |
|    * getIn({ x: { y: { z: 123 }}}, ['x', 'y', 'z']) // 123
 | |
|    * getIn({ x: { y: { z: 123 }}}, ['x', 'q', 'p'], 'ifNotSet') // 'ifNotSet'
 | |
|    * ```
 | |
|    */
 | |
|   function getIn(
 | |
|     collection: unknown,
 | |
|     keyPath: Iterable<unknown>,
 | |
|     notSetValue?: unknown
 | |
|   ): unknown;
 | |
| 
 | |
|   /**
 | |
|    * Returns true if the key path is defined in the provided collection.
 | |
|    *
 | |
|    * A functional alternative to `collection.hasIn(keypath)` which will also
 | |
|    * work with plain Objects and Arrays.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { hasIn } = require('immutable')
 | |
|    * hasIn({ x: { y: { z: 123 }}}, ['x', 'y', 'z']) // true
 | |
|    * hasIn({ x: { y: { z: 123 }}}, ['x', 'q', 'p']) // false
 | |
|    * ```
 | |
|    */
 | |
|   function hasIn(collection: unknown, keyPath: Iterable<unknown>): boolean;
 | |
| 
 | |
|   /**
 | |
|    * Returns a copy of the collection with the value at the key path removed.
 | |
|    *
 | |
|    * A functional alternative to `collection.removeIn(keypath)` which will also
 | |
|    * work with plain Objects and Arrays.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { removeIn } = require('immutable')
 | |
|    * const original = { x: { y: { z: 123 }}}
 | |
|    * removeIn(original, ['x', 'y', 'z']) // { x: { y: {}}}
 | |
|    * console.log(original) // { x: { y: { z: 123 }}}
 | |
|    * ```
 | |
|    */
 | |
|   function removeIn<C>(collection: C, keyPath: Iterable<unknown>): C;
 | |
| 
 | |
|   /**
 | |
|    * Returns a copy of the collection with the value at the key path set to the
 | |
|    * provided value.
 | |
|    *
 | |
|    * A functional alternative to `collection.setIn(keypath)` which will also
 | |
|    * work with plain Objects and Arrays.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { setIn } = require('immutable')
 | |
|    * const original = { x: { y: { z: 123 }}}
 | |
|    * setIn(original, ['x', 'y', 'z'], 456) // { x: { y: { z: 456 }}}
 | |
|    * console.log(original) // { x: { y: { z: 123 }}}
 | |
|    * ```
 | |
|    */
 | |
|   function setIn<C>(
 | |
|     collection: C,
 | |
|     keyPath: Iterable<unknown>,
 | |
|     value: unknown
 | |
|   ): C;
 | |
| 
 | |
|   /**
 | |
|    * Returns a copy of the collection with the value at key path set to the
 | |
|    * result of providing the existing value to the updating function.
 | |
|    *
 | |
|    * A functional alternative to `collection.updateIn(keypath)` which will also
 | |
|    * work with plain Objects and Arrays.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { updateIn } = require('immutable')
 | |
|    * const original = { x: { y: { z: 123 }}}
 | |
|    * updateIn(original, ['x', 'y', 'z'], val => val * 6) // { x: { y: { z: 738 }}}
 | |
|    * console.log(original) // { x: { y: { z: 123 }}}
 | |
|    * ```
 | |
|    */
 | |
|   function updateIn<C>(
 | |
|     collection: C,
 | |
|     keyPath: Iterable<unknown>,
 | |
|     updater: (value: unknown) => unknown
 | |
|   ): C;
 | |
|   function updateIn<C>(
 | |
|     collection: C,
 | |
|     keyPath: Iterable<unknown>,
 | |
|     notSetValue: unknown,
 | |
|     updater: (value: unknown) => unknown
 | |
|   ): C;
 | |
| 
 | |
|   /**
 | |
|    * Returns a copy of the collection with the remaining collections merged in.
 | |
|    *
 | |
|    * A functional alternative to `collection.merge()` which will also work with
 | |
|    * plain Objects and Arrays.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { merge } = require('immutable')
 | |
|    * const original = { x: 123, y: 456 }
 | |
|    * merge(original, { y: 789, z: 'abc' }) // { x: 123, y: 789, z: 'abc' }
 | |
|    * console.log(original) // { x: 123, y: 456 }
 | |
|    * ```
 | |
|    */
 | |
|   function merge<C>(
 | |
|     collection: C,
 | |
|     ...collections: Array<
 | |
|       | Iterable<unknown>
 | |
|       | Iterable<[unknown, unknown]>
 | |
|       | { [key: string]: unknown }
 | |
|     >
 | |
|   ): C;
 | |
| 
 | |
|   /**
 | |
|    * Returns a copy of the collection with the remaining collections merged in,
 | |
|    * calling the `merger` function whenever an existing value is encountered.
 | |
|    *
 | |
|    * A functional alternative to `collection.mergeWith()` which will also work
 | |
|    * with plain Objects and Arrays.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { mergeWith } = require('immutable')
 | |
|    * const original = { x: 123, y: 456 }
 | |
|    * mergeWith(
 | |
|    *   (oldVal, newVal) => oldVal + newVal,
 | |
|    *   original,
 | |
|    *   { y: 789, z: 'abc' }
 | |
|    * ) // { x: 123, y: 1245, z: 'abc' }
 | |
|    * console.log(original) // { x: 123, y: 456 }
 | |
|    * ```
 | |
|    */
 | |
|   function mergeWith<C>(
 | |
|     merger: (oldVal: unknown, newVal: unknown, key: unknown) => unknown,
 | |
|     collection: C,
 | |
|     ...collections: Array<
 | |
|       | Iterable<unknown>
 | |
|       | Iterable<[unknown, unknown]>
 | |
|       | { [key: string]: unknown }
 | |
|     >
 | |
|   ): C;
 | |
| 
 | |
|   /**
 | |
|    * Like `merge()`, but when two compatible collections are encountered with
 | |
|    * the same key, it merges them as well, recursing deeply through the nested
 | |
|    * data. Two collections are considered to be compatible (and thus will be
 | |
|    * merged together) if they both fall into one of three categories: keyed
 | |
|    * (e.g., `Map`s, `Record`s, and objects), indexed (e.g., `List`s and
 | |
|    * arrays), or set-like (e.g., `Set`s). If they fall into separate
 | |
|    * categories, `mergeDeep` will replace the existing collection with the
 | |
|    * collection being merged in. This behavior can be customized by using
 | |
|    * `mergeDeepWith()`.
 | |
|    *
 | |
|    * Note: Indexed and set-like collections are merged using
 | |
|    * `concat()`/`union()` and therefore do not recurse.
 | |
|    *
 | |
|    * A functional alternative to `collection.mergeDeep()` which will also work
 | |
|    * with plain Objects and Arrays.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { mergeDeep } = require('immutable')
 | |
|    * const original = { x: { y: 123 }}
 | |
|    * mergeDeep(original, { x: { z: 456 }}) // { x: { y: 123, z: 456 }}
 | |
|    * console.log(original) // { x: { y: 123 }}
 | |
|    * ```
 | |
|    */
 | |
|   function mergeDeep<C>(
 | |
|     collection: C,
 | |
|     ...collections: Array<
 | |
|       | Iterable<unknown>
 | |
|       | Iterable<[unknown, unknown]>
 | |
|       | { [key: string]: unknown }
 | |
|     >
 | |
|   ): C;
 | |
| 
 | |
|   /**
 | |
|    * Like `mergeDeep()`, but when two non-collections or incompatible
 | |
|    * collections are encountered at the same key, it uses the `merger` function
 | |
|    * to determine the resulting value. Collections are considered incompatible
 | |
|    * if they fall into separate categories between keyed, indexed, and set-like.
 | |
|    *
 | |
|    * A functional alternative to `collection.mergeDeepWith()` which will also
 | |
|    * work with plain Objects and Arrays.
 | |
|    *
 | |
|    * <!-- runkit:activate -->
 | |
|    * ```js
 | |
|    * const { mergeDeepWith } = require('immutable')
 | |
|    * const original = { x: { y: 123 }}
 | |
|    * mergeDeepWith(
 | |
|    *   (oldVal, newVal) => oldVal + newVal,
 | |
|    *   original,
 | |
|    *   { x: { y: 456 }}
 | |
|    * ) // { x: { y: 579 }}
 | |
|    * console.log(original) // { x: { y: 123 }}
 | |
|    * ```
 | |
|    */
 | |
|   function mergeDeepWith<C>(
 | |
|     merger: (oldVal: unknown, newVal: unknown, key: unknown) => unknown,
 | |
|     collection: C,
 | |
|     ...collections: Array<
 | |
|       | Iterable<unknown>
 | |
|       | Iterable<[unknown, unknown]>
 | |
|       | { [key: string]: unknown }
 | |
|     >
 | |
|   ): C;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Defines the main export of the immutable module to be the Immutable namespace
 | |
|  * This supports many common module import patterns:
 | |
|  *
 | |
|  *     const Immutable = require("immutable");
 | |
|  *     const { List } = require("immutable");
 | |
|  *     import Immutable from "immutable";
 | |
|  *     import * as Immutable from "immutable";
 | |
|  *     import { List } from "immutable";
 | |
|  *
 | |
|  */
 | |
| export = Immutable;
 | |
| 
 | |
| /**
 | |
|  * A global "Immutable" namespace used by UMD modules which allows the use of
 | |
|  * the full Immutable API.
 | |
|  *
 | |
|  * If using Immutable as an imported module, prefer using:
 | |
|  *
 | |
|  *     import Immutable from 'immutable'
 | |
|  *
 | |
|  */
 | |
| export as namespace Immutable;
 | 
